设计通用因果深度学习模型:几何(超级)变压器

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-04-26 DOI:10.1111/mafi.12389
Beatrice Acciaio, Anastasis Kratsios, Gudmund Pammer
{"title":"设计通用因果深度学习模型:几何(超级)变压器","authors":"Beatrice Acciaio,&nbsp;Anastasis Kratsios,&nbsp;Gudmund Pammer","doi":"10.1111/mafi.12389","DOIUrl":null,"url":null,"abstract":"<p>Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of metric spaces <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathcal {X}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathcal {Y}$</annotation>\n </semantics></math> and our framework returns a DL model capable of causally approximating any “regular” map sending time series in <math>\n <semantics>\n <msup>\n <mi>X</mi>\n <mi>Z</mi>\n </msup>\n <annotation>$\\mathcal {X}^{\\mathbb {Z}}$</annotation>\n </semantics></math> to time series in <math>\n <semantics>\n <msup>\n <mi>Y</mi>\n <mi>Z</mi>\n </msup>\n <annotation>$\\mathcal {Y}^{\\mathbb {Z}}$</annotation>\n </semantics></math> while respecting their forward flow of information throughout time. Suitable geometries on <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathcal {Y}$</annotation>\n </semantics></math> include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fréchet spaces admitting a Schauder basis, for example, as in classical finance. Suitable spaces <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathcal {X}$</annotation>\n </semantics></math> are compact subsets of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathcal {X}$</annotation>\n </semantics></math> and of <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathcal {Y}$</annotation>\n </semantics></math>. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that Hölder functions, defined between such <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathcal {X}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathcal {Y}$</annotation>\n </semantics></math> can be approximated by DL models.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12389","citationCount":"0","resultStr":"{\"title\":\"Designing universal causal deep learning models: The geometric (Hyper)transformer\",\"authors\":\"Beatrice Acciaio,&nbsp;Anastasis Kratsios,&nbsp;Gudmund Pammer\",\"doi\":\"10.1111/mafi.12389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of metric spaces <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathcal {X}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathcal {Y}$</annotation>\\n </semantics></math> and our framework returns a DL model capable of causally approximating any “regular” map sending time series in <math>\\n <semantics>\\n <msup>\\n <mi>X</mi>\\n <mi>Z</mi>\\n </msup>\\n <annotation>$\\\\mathcal {X}^{\\\\mathbb {Z}}$</annotation>\\n </semantics></math> to time series in <math>\\n <semantics>\\n <msup>\\n <mi>Y</mi>\\n <mi>Z</mi>\\n </msup>\\n <annotation>$\\\\mathcal {Y}^{\\\\mathbb {Z}}$</annotation>\\n </semantics></math> while respecting their forward flow of information throughout time. Suitable geometries on <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathcal {Y}$</annotation>\\n </semantics></math> include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fréchet spaces admitting a Schauder basis, for example, as in classical finance. Suitable spaces <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathcal {X}$</annotation>\\n </semantics></math> are compact subsets of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathcal {X}$</annotation>\\n </semantics></math> and of <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathcal {Y}$</annotation>\\n </semantics></math>. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that Hölder functions, defined between such <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathcal {X}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathcal {Y}$</annotation>\\n </semantics></math> can be approximated by DL models.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12389\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12389\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12389","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

随机分析中的几个问题是通过它们的几何结构来定义的,保持几何结构对于产生有意义的预测是必不可少的。然而,如何设计能够编码这些几何结构的原则性深度学习(DL)模型在很大程度上仍然未知。我们通过引入一个通用的因果几何深度学习框架来解决这个开放问题,在这个框架中,用户指定一对合适的度量空间$\mathscr{X}$和$\mathscr{Y}$,我们的框架返回一个深度学习模型,该模型能够将$\mathscr{X}^{\mathbb{Z}}$中的任何“规则”映射因果地逼近$\mathscr{Y}}^{\mathbb{Z}}$中的时间序列发送到$\mathscr{Y}}}$中的时间序列,同时尊重它们在整个时间中的前向信息流。$\mathscr{Y}$上的合适几何包括在最优停止问题中产生的各种(适应的)Wasserstein空间,描述连续时间有限状态马尔可夫链的条件分布的各种统计流形,以及允许Schauder基的所有Fr\ {e}chet空间,例如在经典金融中。合适的空间$\mathscr{X}$是任何欧几里德空间的紧子集。我们的结果都定量地表达了我们的DL模型所需的参数数量,以实现给定的近似误差,作为目标映射的正则性和$\mathscr{X}$和$\mathscr{Y}$的几何结构的函数。即使省略了任何时间结构,我们的普遍近似定理也第一次保证了在$\mathscr{X}$和$\mathscr{Y}$之间定义的H\ \ 0}阶函数可以被DL模型近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing universal causal deep learning models: The geometric (Hyper)transformer

Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of metric spaces X $\mathcal {X}$ and Y $\mathcal {Y}$ and our framework returns a DL model capable of causally approximating any “regular” map sending time series in X Z $\mathcal {X}^{\mathbb {Z}}$ to time series in Y Z $\mathcal {Y}^{\mathbb {Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on Y $\mathcal {Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fréchet spaces admitting a Schauder basis, for example, as in classical finance. Suitable spaces X $\mathcal {X}$ are compact subsets of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of X $\mathcal {X}$ and of Y $\mathcal {Y}$ . Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that Hölder functions, defined between such X $\mathcal {X}$ and Y $\mathcal {Y}$ can be approximated by DL models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1