{"title":"聚苯胺-2-磺酸修饰硼掺杂金刚石电极差分脉冲伏安法测定萘普生","authors":"Öznur Güngör","doi":"10.20450/mjcce.2022.2381","DOIUrl":null,"url":null,"abstract":"In this study, an electrochemical sensor based on a boron doped diamond electrode (BDDE) was developed for the determination of naproxen (NAP) using a poly(aniline-2-sulfonic acid)/boron doped diamond electrode, p(A2SA/BDDE). Polymerization of A2SA was conducted in a water/acetonitrile (1:1) mixture containing 0.1 M sodium perchlorate (NaClO4) on bare BDDE and the electrochemical properties studied by cyclic voltammetry in ferricyanide/KNO3 solution. The prepared p(A2SA/BDDE) was used for detection of NAP. Effects of parameters such as monomer type and concentration, the number of cycles, and scan rate were investigated using differential pulse voltammetry (DPV) in phosphate buffer containing 0.75 mM NAP. The effect of electrolyte type and pH on DPV responses to NAP were also studied. The oxidative current peak stem from NAP concentration observed at 1.1 V potential. A linear calibration curve was obtained in the range of 0.05–1.00 mM NAP concentration. Correlation coefficient (R2), detection limit, and quantification limit were calculated as 0.9944, 0.0328 mM, and 0.1093 mM, respectively. In conclusion, it may be claimed that the modified electrode constructed in this work can be used successfully as a naproxen-selective membrane due to its ease of preparation, high R2 value, and good reproducibility.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of naproxen by using differential pulse voltammetry with poly (aniline-2-sulfonic acid) modified boron doped diamond electrode\",\"authors\":\"Öznur Güngör\",\"doi\":\"10.20450/mjcce.2022.2381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an electrochemical sensor based on a boron doped diamond electrode (BDDE) was developed for the determination of naproxen (NAP) using a poly(aniline-2-sulfonic acid)/boron doped diamond electrode, p(A2SA/BDDE). Polymerization of A2SA was conducted in a water/acetonitrile (1:1) mixture containing 0.1 M sodium perchlorate (NaClO4) on bare BDDE and the electrochemical properties studied by cyclic voltammetry in ferricyanide/KNO3 solution. The prepared p(A2SA/BDDE) was used for detection of NAP. Effects of parameters such as monomer type and concentration, the number of cycles, and scan rate were investigated using differential pulse voltammetry (DPV) in phosphate buffer containing 0.75 mM NAP. The effect of electrolyte type and pH on DPV responses to NAP were also studied. The oxidative current peak stem from NAP concentration observed at 1.1 V potential. A linear calibration curve was obtained in the range of 0.05–1.00 mM NAP concentration. Correlation coefficient (R2), detection limit, and quantification limit were calculated as 0.9944, 0.0328 mM, and 0.1093 mM, respectively. In conclusion, it may be claimed that the modified electrode constructed in this work can be used successfully as a naproxen-selective membrane due to its ease of preparation, high R2 value, and good reproducibility.\",\"PeriodicalId\":18088,\"journal\":{\"name\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2022.2381\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2022.2381","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
本研究采用聚苯胺-2-磺酸/硼掺杂金刚石电极p(A2SA/BDDE),建立了一种基于硼掺杂金刚石电极(BDDE)的电化学传感器,用于萘普生(NAP)的测定。在含有0.1 M高氯酸钠(NaClO4)的水/乙腈(1:1)混合物中对裸BDDE进行了A2SA的聚合,并在铁氰化物/KNO3溶液中采用循环伏安法研究了A2SA的电化学性能。制备的p(A2SA/BDDE)用于检测NAP。在含0.75 mM NAP的磷酸盐缓冲液中,采用差分脉冲伏安法(DPV)研究了单体类型、浓度、循环次数、扫描速率等参数对磷酸基磷酸酯的影响。研究了电解质类型和pH对DPV对NAP反应的影响。氧化电流峰值来源于在1.1 V电位下观察到的NAP浓度。在0.05 ~ 1.00 mM NAP浓度范围内,得到线性校准曲线。相关系数(R2)为0.9944 mM,检出限为0.0328 mM,定量限为0.1093 mM。综上所述,本研究构建的修饰电极制备简单、R2值高、重现性好,可以成功地作为萘普生选择性膜。
Determination of naproxen by using differential pulse voltammetry with poly (aniline-2-sulfonic acid) modified boron doped diamond electrode
In this study, an electrochemical sensor based on a boron doped diamond electrode (BDDE) was developed for the determination of naproxen (NAP) using a poly(aniline-2-sulfonic acid)/boron doped diamond electrode, p(A2SA/BDDE). Polymerization of A2SA was conducted in a water/acetonitrile (1:1) mixture containing 0.1 M sodium perchlorate (NaClO4) on bare BDDE and the electrochemical properties studied by cyclic voltammetry in ferricyanide/KNO3 solution. The prepared p(A2SA/BDDE) was used for detection of NAP. Effects of parameters such as monomer type and concentration, the number of cycles, and scan rate were investigated using differential pulse voltammetry (DPV) in phosphate buffer containing 0.75 mM NAP. The effect of electrolyte type and pH on DPV responses to NAP were also studied. The oxidative current peak stem from NAP concentration observed at 1.1 V potential. A linear calibration curve was obtained in the range of 0.05–1.00 mM NAP concentration. Correlation coefficient (R2), detection limit, and quantification limit were calculated as 0.9944, 0.0328 mM, and 0.1093 mM, respectively. In conclusion, it may be claimed that the modified electrode constructed in this work can be used successfully as a naproxen-selective membrane due to its ease of preparation, high R2 value, and good reproducibility.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.