用变异系数法分析镍运输公路路堤边坡的敏感性

IF 2.8 Q2 MINING & MINERAL PROCESSING Mining of Mineral Deposits Pub Date : 2022-09-30 DOI:10.33271/mining16.03.048
S. Saptono, Danu Mirza Rezky
{"title":"用变异系数法分析镍运输公路路堤边坡的敏感性","authors":"S. Saptono, Danu Mirza Rezky","doi":"10.33271/mining16.03.048","DOIUrl":null,"url":null,"abstract":"Purpose. The behavior of slope instability is influenced by many factors, both internal, such as the physical-mechanical properties of materials, and external, such as rain and seismic activity. Sensitivity analysis is used to determine the parameters that have the greatest impact on the level of slope stability. Methods. Sensitivity analysis of embankment slopes uses the coefficient of variation (CV) approach with input parameters namely cohesion and internal friction angle. Findings. The results of the study confirm that the internal friction angle is the most influential parameter on the embankment slope stability. The evidence is that at the highest percentage of CV, there is the highest probability of avalanches, based on these parameters. Originality. In this research, the coefficient of variation method is used to determine which parameters have heterogeneous data distribution and the greatest probability of failure, as well as to test mechanical sensitivity with the concept of changing the percentage of parameters to a safety factor value to validate calculations using the coefficient of variation approach. Practical implications. The sensitivity analysis results are not only limited to values, since the more important is finding out the cause of the influence of these parameters according to field conditions. The reason why the internal friction angle is the most sensitive parameter is the grain size approach, when the limestone mixture in the field has coarse and large grain sizes. Therefore, the surface tends to form rough waves and causes the relatively large grained rocks to have large internal friction angles.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensitivity analysis of nickel haul road embankment slopes using the coefficient of variation approach\",\"authors\":\"S. Saptono, Danu Mirza Rezky\",\"doi\":\"10.33271/mining16.03.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. The behavior of slope instability is influenced by many factors, both internal, such as the physical-mechanical properties of materials, and external, such as rain and seismic activity. Sensitivity analysis is used to determine the parameters that have the greatest impact on the level of slope stability. Methods. Sensitivity analysis of embankment slopes uses the coefficient of variation (CV) approach with input parameters namely cohesion and internal friction angle. Findings. The results of the study confirm that the internal friction angle is the most influential parameter on the embankment slope stability. The evidence is that at the highest percentage of CV, there is the highest probability of avalanches, based on these parameters. Originality. In this research, the coefficient of variation method is used to determine which parameters have heterogeneous data distribution and the greatest probability of failure, as well as to test mechanical sensitivity with the concept of changing the percentage of parameters to a safety factor value to validate calculations using the coefficient of variation approach. Practical implications. The sensitivity analysis results are not only limited to values, since the more important is finding out the cause of the influence of these parameters according to field conditions. The reason why the internal friction angle is the most sensitive parameter is the grain size approach, when the limestone mixture in the field has coarse and large grain sizes. Therefore, the surface tends to form rough waves and causes the relatively large grained rocks to have large internal friction angles.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining16.03.048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining16.03.048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

摘要

意图边坡失稳行为受到许多因素的影响,既有内部因素,如材料的物理力学性能,也有外部因素,如降雨和地震活动。敏感性分析用于确定对边坡稳定性水平影响最大的参数。方法。路堤边坡的敏感性分析采用变异系数法,输入参数为内聚力和内摩擦角。调查结果。研究结果表明,内摩擦角是影响路堤边坡稳定性的最大参数。根据这些参数,有证据表明,在CV的最高百分比下,雪崩的概率最高。独创性在本研究中,变异系数法用于确定哪些参数具有异构数据分布和最大的失效概率,并通过将参数百分比更改为安全系数值的概念来测试机械灵敏度,以验证使用变异系数法的计算。实际意义。灵敏度分析结果不仅限于数值,因为更重要的是根据现场条件找出这些参数影响的原因。当现场的石灰石混合物具有粗粒和大粒径时,内摩擦角是最敏感的参数的原因是粒度方法。因此,表面倾向于形成粗糙的波浪,并导致相对较大粒度的岩石具有较大的内摩擦角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity analysis of nickel haul road embankment slopes using the coefficient of variation approach
Purpose. The behavior of slope instability is influenced by many factors, both internal, such as the physical-mechanical properties of materials, and external, such as rain and seismic activity. Sensitivity analysis is used to determine the parameters that have the greatest impact on the level of slope stability. Methods. Sensitivity analysis of embankment slopes uses the coefficient of variation (CV) approach with input parameters namely cohesion and internal friction angle. Findings. The results of the study confirm that the internal friction angle is the most influential parameter on the embankment slope stability. The evidence is that at the highest percentage of CV, there is the highest probability of avalanches, based on these parameters. Originality. In this research, the coefficient of variation method is used to determine which parameters have heterogeneous data distribution and the greatest probability of failure, as well as to test mechanical sensitivity with the concept of changing the percentage of parameters to a safety factor value to validate calculations using the coefficient of variation approach. Practical implications. The sensitivity analysis results are not only limited to values, since the more important is finding out the cause of the influence of these parameters according to field conditions. The reason why the internal friction angle is the most sensitive parameter is the grain size approach, when the limestone mixture in the field has coarse and large grain sizes. Therefore, the surface tends to form rough waves and causes the relatively large grained rocks to have large internal friction angles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
期刊最新文献
Analyzing stability of protective structures as the elements of geotechnical tailing pond safety Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods Optimizing the blast fragmentation quality of discontinuous rock mass: Case study of Jebel Bouzegza Open-Cast Mine, North Algeria Use of solid mining waste to improve water retention capacity of loamy soils Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1