{"title":"一类具有次线性复杂度的柯西矩阵的秩结构逼近","authors":"Mikhail Lepilov, J. Xia","doi":"10.1002/nla.2526","DOIUrl":null,"url":null,"abstract":"In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rank‐structured approximation of some Cauchy matrices with sublinear complexity\",\"authors\":\"Mikhail Lepilov, J. Xia\",\"doi\":\"10.1002/nla.2526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2526\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2526","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rank‐structured approximation of some Cauchy matrices with sublinear complexity
In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.