一类具有次线性复杂度的柯西矩阵的秩结构逼近

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-08-07 DOI:10.1002/nla.2526
Mikhail Lepilov, J. Xia
{"title":"一类具有次线性复杂度的柯西矩阵的秩结构逼近","authors":"Mikhail Lepilov, J. Xia","doi":"10.1002/nla.2526","DOIUrl":null,"url":null,"abstract":"In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rank‐structured approximation of some Cauchy matrices with sublinear complexity\",\"authors\":\"Mikhail Lepilov, J. Xia\",\"doi\":\"10.1002/nla.2526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2526\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2526","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑一类重要的柯西矩阵的秩结构近似。这种近似在Toeplitz矩阵和某些核矩阵的稳定和高效直接求解等结构化矩阵方法和其他算法中起着关键作用。对于这样一个大小的矩阵,先前的秩结构近似(特别是层次半可分割,或HSS近似)花费的复杂性最少。在这里,我们将展示如何构建具有次线性(特别是)复杂性的HSS近似。主要思想包括广泛的计算重用和分析远场压缩策略。每个层级的低秩压缩仅限于单个非对角线块行,然后产生的基矩阵可用于其他非对角线块行以及非对角线块列。严格分析了非对角线块之间的关系。远场压缩使用解析代理点方法,其中我们优化了一些参数的选择,以获得准确的低秩近似。基重用思想和由此产生的分析层次压缩方案都可以推广到一些其他核矩阵,并有助于加速相关的秩结构近似(尽管不是后续的操作,如矩阵向量乘法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rank‐structured approximation of some Cauchy matrices with sublinear complexity
In this article, we consider the rank‐structured approximation of one important type of Cauchy matrix. This approximation plays a key role in some structured matrix methods such as stable and efficient direct solvers and other algorithms for Toeplitz matrices and certain kernel matrices. Previous rank‐structured approximations (specifically hierarchically semiseparable, or HSS, approximations) for such a matrix of size cost at least complexity. Here, we show how to construct an HSS approximation with sublinear (specifically, ) complexity. The main ideas include extensive computation reuse and an analytical far‐field compression strategy. Low‐rank compression at each hierarchical level is restricted to just a single off‐diagonal block row, and a resulting basis matrix is then reused for other off‐diagonal block rows as well as off‐diagonal block columns. The relationships among the off‐diagonal blocks are rigorously analyzed. The far‐field compression uses an analytical proxy point method where we optimize the choice of some parameters so as to obtain accurate low‐rank approximations. Both the basis reuse ideas and the resulting analytical hierarchical compression scheme can be generalized to some other kernel matrices and are useful for accelerating relevant rank‐structured approximations (though not subsequent operations like matrix‐vector multiplications).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1