{"title":"沙蚕幼虫(鳞翅目:蛱蝶科:蛱蝶科)及其3个亲缘种使用口腔气味剂驱除蚂蚁和黄蜂","authors":"Taro Hayashi, Kaori Holikawa, Hisako Akiba, Takashi A. Inoue, Kinuko Niihara, Tatsuya Fukuda","doi":"10.1007/s00049-023-00391-1","DOIUrl":null,"url":null,"abstract":"<div><p>We incidentally discovered that the larvae of <i>Sasakia charonda</i> (Hewitson, 1863) (Lepidoptera: Nymphalidae: Apaturinae) disturbed by ants, wasps, or humans release volatile compounds orally. To identify these substances, we collected oral odorant samples directly from the mouths of <i>S. charonda</i> larvae into volatile-collecting tubes. The trapped oral odorant samples were subjected to gas chromatography–mass spectrometry (GC–MS). We confirmed the identity of 19 substances by comparing them to GC results of known standards and inferred them to mainly be alcohols and aldehydes/ketones, with main chains of 4–5 carbons. Three of the chemicals in the oral odorant samples, 2-butanol, 1-penten-3-ol, and 3-pentanone, showed a repellant effect on the ants <i>Pristomyrmex punctatus</i> (Smith, 1860) and <i>Formica japonica</i> Motschoulsky, 1866 (Hymenoptera: Formicidae). We also examined the effects of these 19 volatiles on <i>Polistes</i> spp. (Hymenoptera: Vespidae) and confirmed that some of them were effective repellants against these wasps. We propose that the substances we identified in this study can be used as defensive chemicals, analogous to the osmeterium emissions specific to Papilionidae butterflies. Furthermore, we examined the oral odorants of three related Japanese Apaturine species, <i>Hestina assimilis</i> (Linnaeus, 1758), <i>H. persimilis</i> (Westwood, 1850), and <i>Apatura metis</i> (Freyer, 1829) using the same approach. The chemical compositions of the oral odorants of <i>H. assimilis</i> and <i>H. persimilis</i> were similar to that of <i>S. charonda</i>, whereas that of <i>A. metis</i> differed. Some of the oral substances also induced a defensive response in conspecific Apaturinae larvae. We consider these substances to also act as alarm pheromones in these larvae.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"33 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-023-00391-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Larvae of Sasakia charonda (Lepidoptera: Nymphalidae: Apaturinae) and three related species use oral odorants to repel ants and wasps\",\"authors\":\"Taro Hayashi, Kaori Holikawa, Hisako Akiba, Takashi A. Inoue, Kinuko Niihara, Tatsuya Fukuda\",\"doi\":\"10.1007/s00049-023-00391-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We incidentally discovered that the larvae of <i>Sasakia charonda</i> (Hewitson, 1863) (Lepidoptera: Nymphalidae: Apaturinae) disturbed by ants, wasps, or humans release volatile compounds orally. To identify these substances, we collected oral odorant samples directly from the mouths of <i>S. charonda</i> larvae into volatile-collecting tubes. The trapped oral odorant samples were subjected to gas chromatography–mass spectrometry (GC–MS). We confirmed the identity of 19 substances by comparing them to GC results of known standards and inferred them to mainly be alcohols and aldehydes/ketones, with main chains of 4–5 carbons. Three of the chemicals in the oral odorant samples, 2-butanol, 1-penten-3-ol, and 3-pentanone, showed a repellant effect on the ants <i>Pristomyrmex punctatus</i> (Smith, 1860) and <i>Formica japonica</i> Motschoulsky, 1866 (Hymenoptera: Formicidae). We also examined the effects of these 19 volatiles on <i>Polistes</i> spp. (Hymenoptera: Vespidae) and confirmed that some of them were effective repellants against these wasps. We propose that the substances we identified in this study can be used as defensive chemicals, analogous to the osmeterium emissions specific to Papilionidae butterflies. Furthermore, we examined the oral odorants of three related Japanese Apaturine species, <i>Hestina assimilis</i> (Linnaeus, 1758), <i>H. persimilis</i> (Westwood, 1850), and <i>Apatura metis</i> (Freyer, 1829) using the same approach. The chemical compositions of the oral odorants of <i>H. assimilis</i> and <i>H. persimilis</i> were similar to that of <i>S. charonda</i>, whereas that of <i>A. metis</i> differed. Some of the oral substances also induced a defensive response in conspecific Apaturinae larvae. We consider these substances to also act as alarm pheromones in these larvae.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"33 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-023-00391-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-023-00391-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-023-00391-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Larvae of Sasakia charonda (Lepidoptera: Nymphalidae: Apaturinae) and three related species use oral odorants to repel ants and wasps
We incidentally discovered that the larvae of Sasakia charonda (Hewitson, 1863) (Lepidoptera: Nymphalidae: Apaturinae) disturbed by ants, wasps, or humans release volatile compounds orally. To identify these substances, we collected oral odorant samples directly from the mouths of S. charonda larvae into volatile-collecting tubes. The trapped oral odorant samples were subjected to gas chromatography–mass spectrometry (GC–MS). We confirmed the identity of 19 substances by comparing them to GC results of known standards and inferred them to mainly be alcohols and aldehydes/ketones, with main chains of 4–5 carbons. Three of the chemicals in the oral odorant samples, 2-butanol, 1-penten-3-ol, and 3-pentanone, showed a repellant effect on the ants Pristomyrmex punctatus (Smith, 1860) and Formica japonica Motschoulsky, 1866 (Hymenoptera: Formicidae). We also examined the effects of these 19 volatiles on Polistes spp. (Hymenoptera: Vespidae) and confirmed that some of them were effective repellants against these wasps. We propose that the substances we identified in this study can be used as defensive chemicals, analogous to the osmeterium emissions specific to Papilionidae butterflies. Furthermore, we examined the oral odorants of three related Japanese Apaturine species, Hestina assimilis (Linnaeus, 1758), H. persimilis (Westwood, 1850), and Apatura metis (Freyer, 1829) using the same approach. The chemical compositions of the oral odorants of H. assimilis and H. persimilis were similar to that of S. charonda, whereas that of A. metis differed. Some of the oral substances also induced a defensive response in conspecific Apaturinae larvae. We consider these substances to also act as alarm pheromones in these larvae.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.