数字电路可靠性估计研究进展

Matheus Ferreira Pontes, Clayton R. Farias, R. Schvittz, P. Butzen, Leomar Da Rosa Jr.
{"title":"数字电路可靠性估计研究进展","authors":"Matheus Ferreira Pontes, Clayton R. Farias, R. Schvittz, P. Butzen, Leomar Da Rosa Jr.","doi":"10.29292/jics.v16i3.568","DOIUrl":null,"url":null,"abstract":"The aggressive technology scaling has significantly affected the circuit reliability. The interaction of environmental radiation with the devices in the integrated circuits (ICs) may be the dominant reliability aspect of advanced ICs. Several techniques have been explored to mitigate the radiation effects and guarantee a satisfactory reliability levels. In this context, estimating circuit radiation reliability is crucial and a challenge that has not yet been overcome. For decades, several different methods have been proposed to provide circuit reliability. Recently, the radiation effects have been more faithfully incorporated in these strategies to provide the circuit susceptibility more accurately. This paper overviews the current trend for estimating the radiation reliability of digital circuits. The survey divides the approaches into two abstraction levels: (i) gate-level that incorporate the layout information and (ii) circuit-level that traditionally explore the logic circuit characteristic to provide the radiation susceptibility of combinational circuits. We also present an open-source tool that incorporates several previously explored methods. Finally, the actual research aspects are discussed, providing the newly emerging topic, such as selective hardening and critical vector identification.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Survey on Reliability Estimation in Digital Circuits\",\"authors\":\"Matheus Ferreira Pontes, Clayton R. Farias, R. Schvittz, P. Butzen, Leomar Da Rosa Jr.\",\"doi\":\"10.29292/jics.v16i3.568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aggressive technology scaling has significantly affected the circuit reliability. The interaction of environmental radiation with the devices in the integrated circuits (ICs) may be the dominant reliability aspect of advanced ICs. Several techniques have been explored to mitigate the radiation effects and guarantee a satisfactory reliability levels. In this context, estimating circuit radiation reliability is crucial and a challenge that has not yet been overcome. For decades, several different methods have been proposed to provide circuit reliability. Recently, the radiation effects have been more faithfully incorporated in these strategies to provide the circuit susceptibility more accurately. This paper overviews the current trend for estimating the radiation reliability of digital circuits. The survey divides the approaches into two abstraction levels: (i) gate-level that incorporate the layout information and (ii) circuit-level that traditionally explore the logic circuit characteristic to provide the radiation susceptibility of combinational circuits. We also present an open-source tool that incorporates several previously explored methods. Finally, the actual research aspects are discussed, providing the newly emerging topic, such as selective hardening and critical vector identification.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v16i3.568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v16i3.568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

摘要

激进的技术缩放已经严重影响了电路的可靠性。环境辐射与集成电路中器件的相互作用可能是先进集成电路可靠性的主要方面。已经探索了几种技术来减轻辐射影响并保证令人满意的可靠性水平。在这种情况下,估计电路辐射可靠性是至关重要的,也是一个尚未克服的挑战。几十年来,人们提出了几种不同的方法来提供电路的可靠性。近年来,辐射效应已被更忠实地纳入这些策略,以提供更准确的电路磁化率。本文综述了目前数字电路辐射可靠性估计的发展趋势。该调查将这些方法分为两个抽象层次:(i)包含布局信息的门级和(ii)传统上探索逻辑电路特性以提供组合电路的辐射敏感性的电路级。我们还提供了一个开源工具,其中包含了以前探索过的几种方法。最后,对目前的研究现状进行了讨论,提出了选择性硬化和关键载体识别等新兴研究课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survey on Reliability Estimation in Digital Circuits
The aggressive technology scaling has significantly affected the circuit reliability. The interaction of environmental radiation with the devices in the integrated circuits (ICs) may be the dominant reliability aspect of advanced ICs. Several techniques have been explored to mitigate the radiation effects and guarantee a satisfactory reliability levels. In this context, estimating circuit radiation reliability is crucial and a challenge that has not yet been overcome. For decades, several different methods have been proposed to provide circuit reliability. Recently, the radiation effects have been more faithfully incorporated in these strategies to provide the circuit susceptibility more accurately. This paper overviews the current trend for estimating the radiation reliability of digital circuits. The survey divides the approaches into two abstraction levels: (i) gate-level that incorporate the layout information and (ii) circuit-level that traditionally explore the logic circuit characteristic to provide the radiation susceptibility of combinational circuits. We also present an open-source tool that incorporates several previously explored methods. Finally, the actual research aspects are discussed, providing the newly emerging topic, such as selective hardening and critical vector identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
期刊最新文献
Analysis of biosensing performance of Trench Double Gate Junctionless Field Effect Transistor Alternative approach to design Dibit-based XOR and XNOR gate A Low Power R-peak Detector Clocked at Signal Sampling Rate Impact of the gate work function on the experimental I-V characteristics of MOS solar cells simulated with the Sentaurus TCAD software Design and Performance Assessment of a Label- free Biosensor utilizing a Novel TFET Configuration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1