Buthaina Hussein, Laurance M S Bourghli, Muhammed Alzweiri, Y. Al-Hiari, Mohammad Abu Sini, Soraya Alnabulsi, Batool Al-Ghwairi
{"title":"改性pH敏感颗粒气相色谱法合成碳酸酐酶III和IX抑制剂及其生物学评价","authors":"Buthaina Hussein, Laurance M S Bourghli, Muhammed Alzweiri, Y. Al-Hiari, Mohammad Abu Sini, Soraya Alnabulsi, Batool Al-Ghwairi","doi":"10.35516/jjps.v16i2.1470","DOIUrl":null,"url":null,"abstract":"Fifteen compounds were synthesized and tested as potential carbonic anhydrase III (CAIII) and carbonic anhydrase IX (CAIX) inhibitors, six of which are novel. Amides (a1-4), hydroxamic acids (b1-2), and imines (c1-9) derivatives were evaluated for their inhibitory activity against CAII and CAIX using gas chromatography with modified pH-sensitive pellets. The derivatives showed inhibition percentages between 12-56% for CAIII and 44-59% for CAIX, compared to 49% and 63% for captopril (the positive control), respectively. Imines showed the best inhibition of CAIII, while all derivatives showed comparable activity against CAIX. It is hypothesized that the nitrogen atom in imine, amide, or hydroxamic acid moieties in the vicinity of an ionizable group is in coordination with the zinc ion in the active site. Furthermore, the candidates were tested for their antimicrobial and antifungal activity. Generally, they showed low to zero activity against some gram-positive and negative bacteria. This supports the theory of their ability to bind to human carbonic anhydrase but not to bacterial one. These compounds could serve as useful scaffolds to develop more potent and selective carbonic anhydrase inhibitors as anti-obesity and anticancer candidates.","PeriodicalId":14719,"journal":{"name":"Jordan Journal of Pharmaceutical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Biological Evaluation of Carbonic Anhydrase III and IX Inhibitors using Gas Chromatography with Modified pH Sensitive Pellets\",\"authors\":\"Buthaina Hussein, Laurance M S Bourghli, Muhammed Alzweiri, Y. Al-Hiari, Mohammad Abu Sini, Soraya Alnabulsi, Batool Al-Ghwairi\",\"doi\":\"10.35516/jjps.v16i2.1470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fifteen compounds were synthesized and tested as potential carbonic anhydrase III (CAIII) and carbonic anhydrase IX (CAIX) inhibitors, six of which are novel. Amides (a1-4), hydroxamic acids (b1-2), and imines (c1-9) derivatives were evaluated for their inhibitory activity against CAII and CAIX using gas chromatography with modified pH-sensitive pellets. The derivatives showed inhibition percentages between 12-56% for CAIII and 44-59% for CAIX, compared to 49% and 63% for captopril (the positive control), respectively. Imines showed the best inhibition of CAIII, while all derivatives showed comparable activity against CAIX. It is hypothesized that the nitrogen atom in imine, amide, or hydroxamic acid moieties in the vicinity of an ionizable group is in coordination with the zinc ion in the active site. Furthermore, the candidates were tested for their antimicrobial and antifungal activity. Generally, they showed low to zero activity against some gram-positive and negative bacteria. This supports the theory of their ability to bind to human carbonic anhydrase but not to bacterial one. These compounds could serve as useful scaffolds to develop more potent and selective carbonic anhydrase inhibitors as anti-obesity and anticancer candidates.\",\"PeriodicalId\":14719,\"journal\":{\"name\":\"Jordan Journal of Pharmaceutical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35516/jjps.v16i2.1470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35516/jjps.v16i2.1470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Synthesis and Biological Evaluation of Carbonic Anhydrase III and IX Inhibitors using Gas Chromatography with Modified pH Sensitive Pellets
Fifteen compounds were synthesized and tested as potential carbonic anhydrase III (CAIII) and carbonic anhydrase IX (CAIX) inhibitors, six of which are novel. Amides (a1-4), hydroxamic acids (b1-2), and imines (c1-9) derivatives were evaluated for their inhibitory activity against CAII and CAIX using gas chromatography with modified pH-sensitive pellets. The derivatives showed inhibition percentages between 12-56% for CAIII and 44-59% for CAIX, compared to 49% and 63% for captopril (the positive control), respectively. Imines showed the best inhibition of CAIII, while all derivatives showed comparable activity against CAIX. It is hypothesized that the nitrogen atom in imine, amide, or hydroxamic acid moieties in the vicinity of an ionizable group is in coordination with the zinc ion in the active site. Furthermore, the candidates were tested for their antimicrobial and antifungal activity. Generally, they showed low to zero activity against some gram-positive and negative bacteria. This supports the theory of their ability to bind to human carbonic anhydrase but not to bacterial one. These compounds could serve as useful scaffolds to develop more potent and selective carbonic anhydrase inhibitors as anti-obesity and anticancer candidates.
期刊介绍:
The Jordan Journal of Pharmaceutical Sciences (JJPS) is a scientific, bi-annual, peer-reviewed publication that will focus on current topics of interest to the pharmaceutical community at large. Although the JJPS is intended to be of interest to pharmaceutical scientists, other healthy workers, and manufacturing processors will also find it most interesting and informative. Papers will cover basic pharmaceutical and applied research, scientific commentaries, as well as views, reviews. Topics on products will include manufacturing process, quality control, pharmaceutical engineering, pharmaceutical technology, and philosophies on all aspects of pharmaceutical sciences. The editorial advisory board would like to place an emphasis on new and innovative methods, technologies, and techniques for the pharmaceutical industry. The reader will find a broad range of important topics in this first issue.