杂岩中渐进式锆石生长

IF 3.5 2区 地球科学 Q1 GEOLOGY Journal of Metamorphic Geology Pub Date : 2023-02-23 DOI:10.1111/jmg.12715
Chris Yakymchuk
{"title":"杂岩中渐进式锆石生长","authors":"Chris Yakymchuk","doi":"10.1111/jmg.12715","DOIUrl":null,"url":null,"abstract":"<p>Empirical studies of zircon in migmatites document features compatible with growth during heating at suprasolidus conditions. However, numerical modelling of zircon behaviour suggests that suprasolidus zircon is expected to grow only during cooling and melt crystallization. Here, phase equilibrium modelling coupled with mineral–melt Zr partitioning is used in an attempt to reconcile the observations from migmatites with the predictions of previous numerical models of zircon behaviour in anatectic systems. In general, an equilibrium-based model that includes Zr partitioning does not allow prograde suprasolidus zircon growth. However, melting of metapelites at temperatures just above the wet solidus may allow limited zircon growth because of the low solubility of zircon in melt coupled with a source of Zr from minor garnet and ilmenite breakdown. Preservation of this zircon requires entrapment in growing peritectic minerals during subsequent heating and further melting. Heating above muscovite exhaustion in metapelites is unlikely to grow zircon because of the progressive increase in zircon solubility as well as an increasing compatibility of Zr in the residual mineral assemblage. The modelled compatibility of Zr in the residue of a metabasite decreases during heating, but an increase in zircon solubility in melt counteracts this; prograde suprasolidus zircon growth in metabasites is unlikely. Infiltration of Zr-rich melt into a migmatite during open-system anatexis provides an additional potential mechanism for prograde suprasolidus zircon growth during high-temperature metamorphism.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 5","pages":"719-743"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12715","citationCount":"3","resultStr":"{\"title\":\"Prograde zircon growth in migmatites\",\"authors\":\"Chris Yakymchuk\",\"doi\":\"10.1111/jmg.12715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Empirical studies of zircon in migmatites document features compatible with growth during heating at suprasolidus conditions. However, numerical modelling of zircon behaviour suggests that suprasolidus zircon is expected to grow only during cooling and melt crystallization. Here, phase equilibrium modelling coupled with mineral–melt Zr partitioning is used in an attempt to reconcile the observations from migmatites with the predictions of previous numerical models of zircon behaviour in anatectic systems. In general, an equilibrium-based model that includes Zr partitioning does not allow prograde suprasolidus zircon growth. However, melting of metapelites at temperatures just above the wet solidus may allow limited zircon growth because of the low solubility of zircon in melt coupled with a source of Zr from minor garnet and ilmenite breakdown. Preservation of this zircon requires entrapment in growing peritectic minerals during subsequent heating and further melting. Heating above muscovite exhaustion in metapelites is unlikely to grow zircon because of the progressive increase in zircon solubility as well as an increasing compatibility of Zr in the residual mineral assemblage. The modelled compatibility of Zr in the residue of a metabasite decreases during heating, but an increase in zircon solubility in melt counteracts this; prograde suprasolidus zircon growth in metabasites is unlikely. Infiltration of Zr-rich melt into a migmatite during open-system anatexis provides an additional potential mechanism for prograde suprasolidus zircon growth during high-temperature metamorphism.</p>\",\"PeriodicalId\":16472,\"journal\":{\"name\":\"Journal of Metamorphic Geology\",\"volume\":\"41 5\",\"pages\":\"719-743\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12715\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metamorphic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12715\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12715","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

混合岩中锆石的经验研究记录了在超固结条件下加热时与生长相容的特征。然而,锆石行为的数值模拟表明,超固结锆石预计仅在冷却和熔融结晶过程中生长。在这里,相平衡建模与矿物-熔体Zr分配相结合,试图将混合岩的观测结果与先前对深熔系统中锆石行为的数值模型的预测相协调。通常,包括Zr分配的基于平衡的模型不允许进行超固结锆石的生长。然而,由于锆石在熔体中的溶解度低,再加上少量石榴石和钛铁矿分解产生的Zr源,在刚好高于湿固相线的温度下熔融化镁石可能会限制锆石的生长。这种锆石的保存需要在随后的加热和进一步熔融过程中被包裹在生长中的包晶矿物中。由于锆石溶解度的逐渐增加以及Zr在残余矿物组合中的相容性的增加,在变质精英中加热超过白云母耗竭不太可能生长锆石。在加热过程中,Zr在偏硼酸盐残留物中的模型相容性降低,但锆石在熔体中溶解度的增加抵消了这一点;变质基岩中进行中的超固结锆石生长是不可能的。在开放系统锐钛矿过程中,富锆熔体渗透到混合岩中,为高温变质过程中前进的超固结锆石生长提供了额外的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prograde zircon growth in migmatites

Empirical studies of zircon in migmatites document features compatible with growth during heating at suprasolidus conditions. However, numerical modelling of zircon behaviour suggests that suprasolidus zircon is expected to grow only during cooling and melt crystallization. Here, phase equilibrium modelling coupled with mineral–melt Zr partitioning is used in an attempt to reconcile the observations from migmatites with the predictions of previous numerical models of zircon behaviour in anatectic systems. In general, an equilibrium-based model that includes Zr partitioning does not allow prograde suprasolidus zircon growth. However, melting of metapelites at temperatures just above the wet solidus may allow limited zircon growth because of the low solubility of zircon in melt coupled with a source of Zr from minor garnet and ilmenite breakdown. Preservation of this zircon requires entrapment in growing peritectic minerals during subsequent heating and further melting. Heating above muscovite exhaustion in metapelites is unlikely to grow zircon because of the progressive increase in zircon solubility as well as an increasing compatibility of Zr in the residual mineral assemblage. The modelled compatibility of Zr in the residue of a metabasite decreases during heating, but an increase in zircon solubility in melt counteracts this; prograde suprasolidus zircon growth in metabasites is unlikely. Infiltration of Zr-rich melt into a migmatite during open-system anatexis provides an additional potential mechanism for prograde suprasolidus zircon growth during high-temperature metamorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
11.80%
发文量
57
审稿时长
6-12 weeks
期刊介绍: The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.
期刊最新文献
Issue Information Zircon Coupled Dissolution–Precipitation Replacement During Melt–Rock Interaction Modifies Chemical Signatures Resulting in Misleading Ages Pressure–Temperature–Time Evolution of a Polymetamorphic Paragneiss With Pseudomorphs After Jadeite From the HP–UHP Gneiss-Eclogite Unit of the Variscan Erzgebirge Crystalline Complex, Germany Issue Information Experimental Replacement of Zircon by Melt-Mediated Coupled Dissolution-Precipitation Causes Dispersion in U–Pb Ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1