Zhengchao Yuan, Yue Zhao, Muhammad Shafiq, Jiahui Song, Jing Hou, Yuqing Liang, Xiao Yu, Yujie Chen, Fan Yu, Mohamed EL-Newehy, Hany EL-Hamshary, Yosry Morsi, Shichao Jiang, Hui Zheng, Xiumei Mo
{"title":"多功能纤维敷料治疗烧伤疼痛、肿胀减轻及瘢痕愈合","authors":"Zhengchao Yuan, Yue Zhao, Muhammad Shafiq, Jiahui Song, Jing Hou, Yuqing Liang, Xiao Yu, Yujie Chen, Fan Yu, Mohamed EL-Newehy, Hany EL-Hamshary, Yosry Morsi, Shichao Jiang, Hui Zheng, Xiumei Mo","doi":"10.1007/s42765-023-00320-5","DOIUrl":null,"url":null,"abstract":"<p>As one of the most common forms of skin injuries, skin burns are often accompanied by edema pain, suppuration of infection, slow tissue regeneration, and severe scar formation, which significantly delay wound healing as well as affect the quality of life. We prepared multifunctional electrospun poly(L-lactide-co-glycolide)/gelatin (P/G)-based dressings to synergistically harness the therapeutic benefits of peppermint essential oil (T), burn ointment (B), and Oregano essential oil (O) (P/G@TBO) for skin regeneration in punch and burn injury models. The P/G@TBO can afford the sustained release of bioactive cues for up to 72 h as well as remarkably promote cell migration (<i>ca.</i> P/G@TBO, 89% vs. control group, 51%) at 24 h. The P/G@TBO membranes also showed significant angiogenic effect as well as antibacterial and anti-inflammatory properties than that of the control group in vitro. Moreover, P/G@TBO dressings enabled fast wound healing (<i>ca.</i> P/G@TBO, 100% wound closure vs. control group, 95%) in a full-thickness excisional defect model up to 14 days in rats. Further evaluation of membranes in different animal models, including tail wagging model, facial itch model, and hot burn injury model showed significant pain relieve effect as well as itching and swelling relief functions during earlier stages of wound healing. Membranes were next transplanted into a scalded wound model in rats and an ear punch wound model in rabbits, which manifested antibacterial and anti-inflammatory properties and promoted re-epithelialization to achieve scarless wound healing percentage wound closure at day 28: P/G@TBO, 96% vs. control group 66%. Taken together our approach of simultaneously harnessing T, B, and O to enable multifunctionality to fibrous dressings may hold great promise for burn wound healing applications and other related disciplines.</p>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"1963 - 1985"},"PeriodicalIF":17.2000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Functional Fibrous Dressings for Burn Injury Treatment with Pain and Swelling Relief and Scarless Wound Healing\",\"authors\":\"Zhengchao Yuan, Yue Zhao, Muhammad Shafiq, Jiahui Song, Jing Hou, Yuqing Liang, Xiao Yu, Yujie Chen, Fan Yu, Mohamed EL-Newehy, Hany EL-Hamshary, Yosry Morsi, Shichao Jiang, Hui Zheng, Xiumei Mo\",\"doi\":\"10.1007/s42765-023-00320-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As one of the most common forms of skin injuries, skin burns are often accompanied by edema pain, suppuration of infection, slow tissue regeneration, and severe scar formation, which significantly delay wound healing as well as affect the quality of life. We prepared multifunctional electrospun poly(L-lactide-co-glycolide)/gelatin (P/G)-based dressings to synergistically harness the therapeutic benefits of peppermint essential oil (T), burn ointment (B), and Oregano essential oil (O) (P/G@TBO) for skin regeneration in punch and burn injury models. The P/G@TBO can afford the sustained release of bioactive cues for up to 72 h as well as remarkably promote cell migration (<i>ca.</i> P/G@TBO, 89% vs. control group, 51%) at 24 h. The P/G@TBO membranes also showed significant angiogenic effect as well as antibacterial and anti-inflammatory properties than that of the control group in vitro. Moreover, P/G@TBO dressings enabled fast wound healing (<i>ca.</i> P/G@TBO, 100% wound closure vs. control group, 95%) in a full-thickness excisional defect model up to 14 days in rats. Further evaluation of membranes in different animal models, including tail wagging model, facial itch model, and hot burn injury model showed significant pain relieve effect as well as itching and swelling relief functions during earlier stages of wound healing. Membranes were next transplanted into a scalded wound model in rats and an ear punch wound model in rabbits, which manifested antibacterial and anti-inflammatory properties and promoted re-epithelialization to achieve scarless wound healing percentage wound closure at day 28: P/G@TBO, 96% vs. control group 66%. Taken together our approach of simultaneously harnessing T, B, and O to enable multifunctionality to fibrous dressings may hold great promise for burn wound healing applications and other related disciplines.</p>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"5 6\",\"pages\":\"1963 - 1985\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-023-00320-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-023-00320-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Functional Fibrous Dressings for Burn Injury Treatment with Pain and Swelling Relief and Scarless Wound Healing
As one of the most common forms of skin injuries, skin burns are often accompanied by edema pain, suppuration of infection, slow tissue regeneration, and severe scar formation, which significantly delay wound healing as well as affect the quality of life. We prepared multifunctional electrospun poly(L-lactide-co-glycolide)/gelatin (P/G)-based dressings to synergistically harness the therapeutic benefits of peppermint essential oil (T), burn ointment (B), and Oregano essential oil (O) (P/G@TBO) for skin regeneration in punch and burn injury models. The P/G@TBO can afford the sustained release of bioactive cues for up to 72 h as well as remarkably promote cell migration (ca. P/G@TBO, 89% vs. control group, 51%) at 24 h. The P/G@TBO membranes also showed significant angiogenic effect as well as antibacterial and anti-inflammatory properties than that of the control group in vitro. Moreover, P/G@TBO dressings enabled fast wound healing (ca. P/G@TBO, 100% wound closure vs. control group, 95%) in a full-thickness excisional defect model up to 14 days in rats. Further evaluation of membranes in different animal models, including tail wagging model, facial itch model, and hot burn injury model showed significant pain relieve effect as well as itching and swelling relief functions during earlier stages of wound healing. Membranes were next transplanted into a scalded wound model in rats and an ear punch wound model in rabbits, which manifested antibacterial and anti-inflammatory properties and promoted re-epithelialization to achieve scarless wound healing percentage wound closure at day 28: P/G@TBO, 96% vs. control group 66%. Taken together our approach of simultaneously harnessing T, B, and O to enable multifunctionality to fibrous dressings may hold great promise for burn wound healing applications and other related disciplines.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.