{"title":"基于氟化聚氨酯酰亚胺的非线性光学材料及其在波导器件中的应用","authors":"Long-De Wang, L. Tong, Jie-Wei Rong, Jian-Wei Wu","doi":"10.1177/09540083231175974","DOIUrl":null,"url":null,"abstract":"Two monomers, a second-order nonlinear optical azo chromophore C containing a tricyanofuran electron acceptor and a dihydroxyethyl nitrogen electron donor, and a bisphenol AF-type diether dianhydride (BPAFDA), were designed and synthesized. Fluorinated polyurethaneimide (PUI) electro-optic (EO) waveguide materials were prepared using the synthesized monomers polymerized with 4,4′-diphenylmethane diisocyanate (MDI). The structures of the synthesized chromophore C, BPAFDA, and polymers of PUI were characterized by 1HNMR and FTIR, and the thermal properties of the polymers were characterized by DSC and TGA. The prepared PUI exhibited good film-forming properties with glass transition temperatures (Tg) between 160–169°C and over 300°C at 5% thermal weight loss in a nitrogen atmosphere. The experimental results showed that the fluorinated PUIs possessed an EO coefficient of 56–60 p.m./V at 1550 nm and the optical propagation loss of the polymer waveguide was between 1.3–1.4 dB/cm at 1550 nm. Using PUI as the core material of the waveguides, EO modulators with Mach-Zehnder (MZ) structure were designed and prepared, showing good EO modulation performance at 1550 nm.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear optical materials based on fluorinated polyurethane-imides and their application in waveguide devices\",\"authors\":\"Long-De Wang, L. Tong, Jie-Wei Rong, Jian-Wei Wu\",\"doi\":\"10.1177/09540083231175974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two monomers, a second-order nonlinear optical azo chromophore C containing a tricyanofuran electron acceptor and a dihydroxyethyl nitrogen electron donor, and a bisphenol AF-type diether dianhydride (BPAFDA), were designed and synthesized. Fluorinated polyurethaneimide (PUI) electro-optic (EO) waveguide materials were prepared using the synthesized monomers polymerized with 4,4′-diphenylmethane diisocyanate (MDI). The structures of the synthesized chromophore C, BPAFDA, and polymers of PUI were characterized by 1HNMR and FTIR, and the thermal properties of the polymers were characterized by DSC and TGA. The prepared PUI exhibited good film-forming properties with glass transition temperatures (Tg) between 160–169°C and over 300°C at 5% thermal weight loss in a nitrogen atmosphere. The experimental results showed that the fluorinated PUIs possessed an EO coefficient of 56–60 p.m./V at 1550 nm and the optical propagation loss of the polymer waveguide was between 1.3–1.4 dB/cm at 1550 nm. Using PUI as the core material of the waveguides, EO modulators with Mach-Zehnder (MZ) structure were designed and prepared, showing good EO modulation performance at 1550 nm.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083231175974\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231175974","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Nonlinear optical materials based on fluorinated polyurethane-imides and their application in waveguide devices
Two monomers, a second-order nonlinear optical azo chromophore C containing a tricyanofuran electron acceptor and a dihydroxyethyl nitrogen electron donor, and a bisphenol AF-type diether dianhydride (BPAFDA), were designed and synthesized. Fluorinated polyurethaneimide (PUI) electro-optic (EO) waveguide materials were prepared using the synthesized monomers polymerized with 4,4′-diphenylmethane diisocyanate (MDI). The structures of the synthesized chromophore C, BPAFDA, and polymers of PUI were characterized by 1HNMR and FTIR, and the thermal properties of the polymers were characterized by DSC and TGA. The prepared PUI exhibited good film-forming properties with glass transition temperatures (Tg) between 160–169°C and over 300°C at 5% thermal weight loss in a nitrogen atmosphere. The experimental results showed that the fluorinated PUIs possessed an EO coefficient of 56–60 p.m./V at 1550 nm and the optical propagation loss of the polymer waveguide was between 1.3–1.4 dB/cm at 1550 nm. Using PUI as the core material of the waveguides, EO modulators with Mach-Zehnder (MZ) structure were designed and prepared, showing good EO modulation performance at 1550 nm.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.