{"title":"碲化铋双晶界热边界电阻的研究","authors":"I. Hsieh, Mei-Jiau Huang","doi":"10.1080/15567265.2018.1561771","DOIUrl":null,"url":null,"abstract":"ABSTRACT The thermal boundary resistances (TBRs) of twin boundaries occurring at three different atomic layers (Te1, Bi, and Te2) of bismuth telluride (Bi2Te3) are investigated in use of the non-equilibrium molecular dynamics (NEMD) simulation method. The simulation results show that among all, the Te1-twin boundaries bring about a lowest interfacial energy corresponding to a most stable system, which explains why this type of twin boundaries is mostly often observed in the laboratory; the Te2-twin boundaries on the other hand possess a largest interfacial energy, resulting in a least stable system. The order in magnitude of the TBRs associated with these three types of twin boundaries is Te2-twin > Bi-twin > Te1-twin. Moreover, the TBR associated with a pair of twin boundaries separated by a distance of 4 unit cell (UC) is found to be about twice as large as that of a single twin boundary of the same type. It implies that the mutual coupling, which causes an increase in TBRs, may be ignored and the effect of twin boundaries may be counted individually as long as the separation distance is larger than 4 UC.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"23 1","pages":"36 - 47"},"PeriodicalIF":2.7000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1561771","citationCount":"5","resultStr":"{\"title\":\"An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride\",\"authors\":\"I. Hsieh, Mei-Jiau Huang\",\"doi\":\"10.1080/15567265.2018.1561771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The thermal boundary resistances (TBRs) of twin boundaries occurring at three different atomic layers (Te1, Bi, and Te2) of bismuth telluride (Bi2Te3) are investigated in use of the non-equilibrium molecular dynamics (NEMD) simulation method. The simulation results show that among all, the Te1-twin boundaries bring about a lowest interfacial energy corresponding to a most stable system, which explains why this type of twin boundaries is mostly often observed in the laboratory; the Te2-twin boundaries on the other hand possess a largest interfacial energy, resulting in a least stable system. The order in magnitude of the TBRs associated with these three types of twin boundaries is Te2-twin > Bi-twin > Te1-twin. Moreover, the TBR associated with a pair of twin boundaries separated by a distance of 4 unit cell (UC) is found to be about twice as large as that of a single twin boundary of the same type. It implies that the mutual coupling, which causes an increase in TBRs, may be ignored and the effect of twin boundaries may be counted individually as long as the separation distance is larger than 4 UC.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"23 1\",\"pages\":\"36 - 47\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2018.1561771\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2018.1561771\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1561771","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An Investigation into the Thermal Boundary Resistance Associated with the Twin Boundary in Bismuth Telluride
ABSTRACT The thermal boundary resistances (TBRs) of twin boundaries occurring at three different atomic layers (Te1, Bi, and Te2) of bismuth telluride (Bi2Te3) are investigated in use of the non-equilibrium molecular dynamics (NEMD) simulation method. The simulation results show that among all, the Te1-twin boundaries bring about a lowest interfacial energy corresponding to a most stable system, which explains why this type of twin boundaries is mostly often observed in the laboratory; the Te2-twin boundaries on the other hand possess a largest interfacial energy, resulting in a least stable system. The order in magnitude of the TBRs associated with these three types of twin boundaries is Te2-twin > Bi-twin > Te1-twin. Moreover, the TBR associated with a pair of twin boundaries separated by a distance of 4 unit cell (UC) is found to be about twice as large as that of a single twin boundary of the same type. It implies that the mutual coupling, which causes an increase in TBRs, may be ignored and the effect of twin boundaries may be counted individually as long as the separation distance is larger than 4 UC.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.