{"title":"基于天气的人工神经网络作物产量预测:与其他方法的比较研究","authors":"A. Gupta, K. Sarkar, D. Dhakre, D. Bhattacharya","doi":"10.54302/mausam.v74i3.174","DOIUrl":null,"url":null,"abstract":"This paper attempts to compare the weather indices based regression approach and Multilayer Perceptron (MLP) Artificial Neural Network (ANN) approach for rice yield prediction at district level of West Bengal. The weather indices for weather variables, viz., minimum temperature, maximum temperature, rainfall, and relative humidity are used as input variables along with time variable t and yield of rice as output variable. The study reveals that the ANN approach works better than the standard regression approach in crop yield prediction. The prediction error percentages are found to be consistently less than 5% in MLP ANN approach except for one district.","PeriodicalId":18363,"journal":{"name":"MAUSAM","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weather based crop yield prediction using artificial neural networks: A comparative study with other approaches\",\"authors\":\"A. Gupta, K. Sarkar, D. Dhakre, D. Bhattacharya\",\"doi\":\"10.54302/mausam.v74i3.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper attempts to compare the weather indices based regression approach and Multilayer Perceptron (MLP) Artificial Neural Network (ANN) approach for rice yield prediction at district level of West Bengal. The weather indices for weather variables, viz., minimum temperature, maximum temperature, rainfall, and relative humidity are used as input variables along with time variable t and yield of rice as output variable. The study reveals that the ANN approach works better than the standard regression approach in crop yield prediction. The prediction error percentages are found to be consistently less than 5% in MLP ANN approach except for one district.\",\"PeriodicalId\":18363,\"journal\":{\"name\":\"MAUSAM\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAUSAM\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.54302/mausam.v74i3.174\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAUSAM","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.54302/mausam.v74i3.174","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Weather based crop yield prediction using artificial neural networks: A comparative study with other approaches
This paper attempts to compare the weather indices based regression approach and Multilayer Perceptron (MLP) Artificial Neural Network (ANN) approach for rice yield prediction at district level of West Bengal. The weather indices for weather variables, viz., minimum temperature, maximum temperature, rainfall, and relative humidity are used as input variables along with time variable t and yield of rice as output variable. The study reveals that the ANN approach works better than the standard regression approach in crop yield prediction. The prediction error percentages are found to be consistently less than 5% in MLP ANN approach except for one district.
期刊介绍:
MAUSAM (Formerly Indian Journal of Meteorology, Hydrology & Geophysics), established in January 1950, is the quarterly research
journal brought out by the India Meteorological Department (IMD). MAUSAM is a medium for publication of original scientific
research work. MAUSAM is a premier scientific research journal published in this part of the world in the fields of Meteorology,
Hydrology & Geophysics. The four issues appear in January, April, July & October.