长壁采煤采空区界面巷道稳定性的多因素分析——一个实例研究

IF 2.8 Q2 MINING & MINERAL PROCESSING Mining of Mineral Deposits Pub Date : 2023-06-30 DOI:10.33271/mining17.02.009
D. Babets, O. Sdvyzhkova, S. Hapieiev, O. Shashenko, V. Vasyl
{"title":"长壁采煤采空区界面巷道稳定性的多因素分析——一个实例研究","authors":"D. Babets, O. Sdvyzhkova, S. Hapieiev, O. Shashenko, V. Vasyl","doi":"10.33271/mining17.02.009","DOIUrl":null,"url":null,"abstract":"Purpose. Creating a generalized algorithm to account for factors (coal seam thickness, enclosed rock mechanical properties, the dimension and bearing capacity of artificial support patterns) causing a gateroad state under the effect of longwall face and goaf. Methods. The assessment of the gateroad stability is based on numerical simulation of the rock stress-strain state (SSS). The finite element method is used to find out the changes in the SSS of surrounding rocks at various stages of longwall mining. The elastic-plastic constitutive model and Hoek-Brown failure criterion implemented in codes RS2 and RS3 (Rocscience) are applied to determine rock displacements dependently on the coal seam thickness, enclosed rock strength, width and strength of artificial support (a packwall comprised of hardening mixture “BI-lining”). To specify the mechanical properties of the packwall material a series of experimental tests were conducted. A computational experiment dealing with 81 combinations of affecting factors was carried out to estimate the roof slag and floor heaving in the gateroad behind the longwall face. A group method of data handling (GMDH ) is employed to generalize the relationships between rock displacements and affecting factors. Findings. The roof-to-floor closure in the gateroad has been determined at the intersection with the longwall face and goaf dependently on the coal seam thickness, enclosed rock strength, width of the packwall, and strength of hardening material. It is revealed that the support material gains the strength value of 30 MPa on the 3rd day from its beginning to use which is fully corresponding to the requirements of protective element bearing capacity. The possibility of using untreated mine water to liquefy the mixture is proved, that allows simplifying and optimizing the solute mixing and pumping technology. Originality. This study contributes to improving the understanding of the factors that influence the stability of underground mining operations and highlights the importance of utilizing numerical simulations in optimizing mining designs. The impact of each factor on the resulting variable (decrease in cross-section of gate road by height) based on the combinatorial algorithm of structural identification of the model is estimated as follows: the packwall width is 48%, the thickness of coal seam is 25%, the strength of enclosing rocks is 23%, and the strength of the packwall material is 4%. Practical implications. The findings provide stakeholders with a technique to determine reasonable parameters for support and protective systems, and the predictive model developed can be used to mitigate potential instability issues in longwall mining excavations. The results have implications under similar geological settings and can be valuable for mine design and optimization in other regions.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study\",\"authors\":\"D. Babets, O. Sdvyzhkova, S. Hapieiev, O. Shashenko, V. Vasyl\",\"doi\":\"10.33271/mining17.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. Creating a generalized algorithm to account for factors (coal seam thickness, enclosed rock mechanical properties, the dimension and bearing capacity of artificial support patterns) causing a gateroad state under the effect of longwall face and goaf. Methods. The assessment of the gateroad stability is based on numerical simulation of the rock stress-strain state (SSS). The finite element method is used to find out the changes in the SSS of surrounding rocks at various stages of longwall mining. The elastic-plastic constitutive model and Hoek-Brown failure criterion implemented in codes RS2 and RS3 (Rocscience) are applied to determine rock displacements dependently on the coal seam thickness, enclosed rock strength, width and strength of artificial support (a packwall comprised of hardening mixture “BI-lining”). To specify the mechanical properties of the packwall material a series of experimental tests were conducted. A computational experiment dealing with 81 combinations of affecting factors was carried out to estimate the roof slag and floor heaving in the gateroad behind the longwall face. A group method of data handling (GMDH ) is employed to generalize the relationships between rock displacements and affecting factors. Findings. The roof-to-floor closure in the gateroad has been determined at the intersection with the longwall face and goaf dependently on the coal seam thickness, enclosed rock strength, width of the packwall, and strength of hardening material. It is revealed that the support material gains the strength value of 30 MPa on the 3rd day from its beginning to use which is fully corresponding to the requirements of protective element bearing capacity. The possibility of using untreated mine water to liquefy the mixture is proved, that allows simplifying and optimizing the solute mixing and pumping technology. Originality. This study contributes to improving the understanding of the factors that influence the stability of underground mining operations and highlights the importance of utilizing numerical simulations in optimizing mining designs. The impact of each factor on the resulting variable (decrease in cross-section of gate road by height) based on the combinatorial algorithm of structural identification of the model is estimated as follows: the packwall width is 48%, the thickness of coal seam is 25%, the strength of enclosing rocks is 23%, and the strength of the packwall material is 4%. Practical implications. The findings provide stakeholders with a technique to determine reasonable parameters for support and protective systems, and the predictive model developed can be used to mitigate potential instability issues in longwall mining excavations. The results have implications under similar geological settings and can be valuable for mine design and optimization in other regions.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining17.02.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.02.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

摘要

意图创建一个通用算法来解释在长壁工作面和采空区的影响下导致巷道状态的因素(煤层厚度、围岩力学特性、人工支护模式的尺寸和承载力)。方法。闸道稳定性评估基于岩石应力-应变状态(SSS)的数值模拟。采用有限元方法,研究了长壁开采不同阶段围岩SSS的变化规律。应用RS2和RS3(Rocscie)中实施的弹塑性本构模型和Hoek-Brown破坏准则,根据煤层厚度、围岩强度、宽度和人工支护(由硬化混合物“BI衬砌”组成的封隔墙)的强度确定岩石位移。为了确定封隔壁材料的力学性能,进行了一系列实验测试。通过对81种影响因素组合的计算实验,估算了长壁工作面后回采巷道的顶渣和底板隆起。采用成组数据处理方法(GMDH),推广了岩石位移与影响因素之间的关系。调查结果。根据煤层厚度、围岩强度、封隔壁宽度和硬化材料的强度,确定了与长壁工作面和采空区相交处的采场巷道的顶板至底板闭合。结果表明,该支撑材料在使用第3天就获得了30MPa的强度值,完全符合保护元件承载能力的要求。证明了使用未经处理的矿井水液化混合物的可能性,从而简化和优化了溶质混合和泵送技术。独创性这项研究有助于提高对影响地下采矿作业稳定性的因素的理解,并强调了利用数值模拟优化采矿设计的重要性。基于模型结构识别的组合算法,各因素对结果变量(门道横截面随高度减小)的影响估计如下:封隔墙宽度为48%,煤层厚度为25%,围岩强度为23%,封隔墙材料强度为4%。实际意义。这些发现为利益相关者提供了一种确定支撑和保护系统合理参数的技术,所开发的预测模型可用于缓解长壁采矿挖掘中潜在的不稳定问题。研究结果对类似地质环境具有一定的指导意义,对其他地区的矿山设计和优化具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study
Purpose. Creating a generalized algorithm to account for factors (coal seam thickness, enclosed rock mechanical properties, the dimension and bearing capacity of artificial support patterns) causing a gateroad state under the effect of longwall face and goaf. Methods. The assessment of the gateroad stability is based on numerical simulation of the rock stress-strain state (SSS). The finite element method is used to find out the changes in the SSS of surrounding rocks at various stages of longwall mining. The elastic-plastic constitutive model and Hoek-Brown failure criterion implemented in codes RS2 and RS3 (Rocscience) are applied to determine rock displacements dependently on the coal seam thickness, enclosed rock strength, width and strength of artificial support (a packwall comprised of hardening mixture “BI-lining”). To specify the mechanical properties of the packwall material a series of experimental tests were conducted. A computational experiment dealing with 81 combinations of affecting factors was carried out to estimate the roof slag and floor heaving in the gateroad behind the longwall face. A group method of data handling (GMDH ) is employed to generalize the relationships between rock displacements and affecting factors. Findings. The roof-to-floor closure in the gateroad has been determined at the intersection with the longwall face and goaf dependently on the coal seam thickness, enclosed rock strength, width of the packwall, and strength of hardening material. It is revealed that the support material gains the strength value of 30 MPa on the 3rd day from its beginning to use which is fully corresponding to the requirements of protective element bearing capacity. The possibility of using untreated mine water to liquefy the mixture is proved, that allows simplifying and optimizing the solute mixing and pumping technology. Originality. This study contributes to improving the understanding of the factors that influence the stability of underground mining operations and highlights the importance of utilizing numerical simulations in optimizing mining designs. The impact of each factor on the resulting variable (decrease in cross-section of gate road by height) based on the combinatorial algorithm of structural identification of the model is estimated as follows: the packwall width is 48%, the thickness of coal seam is 25%, the strength of enclosing rocks is 23%, and the strength of the packwall material is 4%. Practical implications. The findings provide stakeholders with a technique to determine reasonable parameters for support and protective systems, and the predictive model developed can be used to mitigate potential instability issues in longwall mining excavations. The results have implications under similar geological settings and can be valuable for mine design and optimization in other regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
期刊最新文献
Analyzing stability of protective structures as the elements of geotechnical tailing pond safety Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods Optimizing the blast fragmentation quality of discontinuous rock mass: Case study of Jebel Bouzegza Open-Cast Mine, North Algeria Use of solid mining waste to improve water retention capacity of loamy soils Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1