超声波对亚甲基蓝降解和KI氧化反应阈值功率的比较

D. Kobayashi, Chiemi Honma, H. Matsumoto, K. Otake, A. Shono
{"title":"超声波对亚甲基蓝降解和KI氧化反应阈值功率的比较","authors":"D. Kobayashi, Chiemi Honma, H. Matsumoto, K. Otake, A. Shono","doi":"10.4236/OJA.2018.84006","DOIUrl":null,"url":null,"abstract":"Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction caused by hydroxyl radicals, and the cavitation threshold power is also influenced by frequency generally. In this study, the effects of frequency on the threshold power of methylene blue degradation and KI oxidation were investigated in the range between 22.8 kHz and 1640 kHz. The threshold power of KI oxidation reaction increased with increasing frequency. This phenomenon well agrees with previous study, and it is revealed that the generation of I- \n3 ion is caused by oxidation reaction of Iˉ ions with hydroxyl radicals. On the other hand, the threshold power of methylene blue degradation reaction was not affected by frequency. The ultrasonic degradation of methylene blue is considered to be caused by hydroxyl radicals, and there is a linear relationship between degradation rate constant and sonochemical efficiency value. However, it is guessed that the degradation of methylene blue is occurred inside cavitation bubble by pyrolysis at high frequency regions.","PeriodicalId":63563,"journal":{"name":"声学期刊(英文)","volume":"8 1","pages":"61-69"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Threshold Power between Methylene Blue Degradation and KI Oxidation Reaction Using Ultrasound\",\"authors\":\"D. Kobayashi, Chiemi Honma, H. Matsumoto, K. Otake, A. Shono\",\"doi\":\"10.4236/OJA.2018.84006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction caused by hydroxyl radicals, and the cavitation threshold power is also influenced by frequency generally. In this study, the effects of frequency on the threshold power of methylene blue degradation and KI oxidation were investigated in the range between 22.8 kHz and 1640 kHz. The threshold power of KI oxidation reaction increased with increasing frequency. This phenomenon well agrees with previous study, and it is revealed that the generation of I- \\n3 ion is caused by oxidation reaction of Iˉ ions with hydroxyl radicals. On the other hand, the threshold power of methylene blue degradation reaction was not affected by frequency. The ultrasonic degradation of methylene blue is considered to be caused by hydroxyl radicals, and there is a linear relationship between degradation rate constant and sonochemical efficiency value. However, it is guessed that the degradation of methylene blue is occurred inside cavitation bubble by pyrolysis at high frequency regions.\",\"PeriodicalId\":63563,\"journal\":{\"name\":\"声学期刊(英文)\",\"volume\":\"8 1\",\"pages\":\"61-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"声学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJA.2018.84006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"声学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJA.2018.84006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声波用于各种化学反应过程,这些反应受到超声波频率的影响。羟基自由基引起的超声降解反应和氧化反应需要阈值功率,空化阈值功率通常也受频率的影响。在本研究中,研究了频率在22.8kHz至1640kHz范围内对亚甲基蓝降解和KI氧化阈值功率的影响。KI氧化反应的阈值功率随频率的增加而增加。这一现象与以往的研究一致,并揭示了I-3离子的产生是由I-离子与羟基自由基的氧化反应引起的。另一方面,亚甲基蓝降解反应的阈值功率不受频率的影响。超声降解亚甲基蓝被认为是由羟基自由基引起的,降解速率常数与声化学效率值呈线性关系。然而,人们猜测亚甲基蓝的降解是在空化泡内通过高频区域的热解发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Threshold Power between Methylene Blue Degradation and KI Oxidation Reaction Using Ultrasound
Ultrasound is used in various chemical reaction processes, and these reactions are influenced by ultrasonic frequency. A threshold power is required for the ultrasonic degradation reaction and oxidation reaction caused by hydroxyl radicals, and the cavitation threshold power is also influenced by frequency generally. In this study, the effects of frequency on the threshold power of methylene blue degradation and KI oxidation were investigated in the range between 22.8 kHz and 1640 kHz. The threshold power of KI oxidation reaction increased with increasing frequency. This phenomenon well agrees with previous study, and it is revealed that the generation of I- 3 ion is caused by oxidation reaction of Iˉ ions with hydroxyl radicals. On the other hand, the threshold power of methylene blue degradation reaction was not affected by frequency. The ultrasonic degradation of methylene blue is considered to be caused by hydroxyl radicals, and there is a linear relationship between degradation rate constant and sonochemical efficiency value. However, it is guessed that the degradation of methylene blue is occurred inside cavitation bubble by pyrolysis at high frequency regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
80
期刊最新文献
On the Simulation of the Influence of Defects on Immersed Plane Periodic Multilayer Viscoelastic Media CFD Simulation of Air Flow Behaviour at Different Flow Rates in a Turkish Woodwind Instrument (Turkish Treble Recorder) Vibration Simulation Analysis of Ceramic Matrix Composite Turbine Rotor Integral Blade-Disk A Study on the Noise Characteristics of a Gasoline Vehicle under Typical Operating Conditions Design and Analysis of Sandwich Structure with Negative Poisson’s Ratio for Vibration Reduction in Low Frequency Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1