多假设下贝叶斯序列联合检测与估计

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Sequential Analysis-Design Methods and Applications Pub Date : 2020-03-27 DOI:10.1080/07474946.2022.2043053
Dominik Reinhard, Michael Fauss, A. Zoubir
{"title":"多假设下贝叶斯序列联合检测与估计","authors":"Dominik Reinhard, Michael Fauss, A. Zoubir","doi":"10.1080/07474946.2022.2043053","DOIUrl":null,"url":null,"abstract":"Abstract We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.","PeriodicalId":48879,"journal":{"name":"Sequential Analysis-Design Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bayesian sequential joint detection and estimation under multiple hypotheses\",\"authors\":\"Dominik Reinhard, Michael Fauss, A. Zoubir\",\"doi\":\"10.1080/07474946.2022.2043053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.\",\"PeriodicalId\":48879,\"journal\":{\"name\":\"Sequential Analysis-Design Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sequential Analysis-Design Methods and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07474946.2022.2043053\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sequential Analysis-Design Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07474946.2022.2043053","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

摘要我们考虑联合检验多个假设并估计潜在分布的随机参数的问题。在对潜在随机过程的温和假设下,在顺序设置中研究了这个问题。最优方法最小化期望的样本数量,同时确保平均检测/估计误差不超过特定水平。在将约束问题转化为无约束问题后,我们用一个非线性Bellman方程来刻画一般解,该方程由一组成本系数参数化。导出了成本函数相对于系数的导数与序列过程的检测/估计误差之间的强联系。基于这一基本性质,我们进一步证明了对于适当选择的成本系数,约束问题和无约束问题的解是一致的。我们提出了两种寻找最优系数的方法。对于第一种方法,将最终的优化问题转换为线性规划,而第二种方法通过投影梯度上升来解决它。为了说明理论结果,我们考虑了两个问题,并对其进行了数值设计。通过蒙特卡洛模拟,验证了数值结果与理论的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian sequential joint detection and estimation under multiple hypotheses
Abstract We consider the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution. This problem is investigated in a sequential setup under mild assumptions on the underlying random process. The optimal method minimizes the expected number of samples while ensuring that the average detection/estimation errors do not exceed a certain level. After converting the constrained problem to an unconstrained one, we characterize the general solution by a nonlinear Bellman equation, which is parameterized by a set of cost coefficients. A strong connection between the derivatives of the cost function with respect to the coefficients and the detection/estimation errors of the sequential procedure is derived. Based on this fundamental property, we further show that for suitably chosen cost coefficients the solutions of the constrained and the unconstrained problem coincide. We present two approaches to finding the optimal coefficients. For the first approach, the final optimization problem is converted into a linear program, whereas the second approach solves it with a projected gradient ascent. To illustrate the theoretical results, we consider two problems for which the optimal schemes are designed numerically. Using Monte Carlo simulations, it is validated that the numerical results agree with the theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
20
期刊介绍: The purpose of Sequential Analysis is to contribute to theoretical and applied aspects of sequential methodologies in all areas of statistical science. Published papers highlight the development of new and important sequential approaches. Interdisciplinary articles that emphasize the methodology of practical value to applied researchers and statistical consultants are highly encouraged. Papers that cover contemporary areas of applications including animal abundance, bioequivalence, communication science, computer simulations, data mining, directional data, disease mapping, environmental sampling, genome, imaging, microarrays, networking, parallel processing, pest management, sonar detection, spatial statistics, tracking, and engineering are deemed especially important. Of particular value are expository review articles that critically synthesize broad-based statistical issues. Papers on case-studies are also considered. All papers are refereed.
期刊最新文献
Distribution of number of observations required to obtain a cover for the support of a uniform distribution Bayesian and non-Bayesian inference for a general family of distributions based on simple step-stress life test using TRV model under type II censoring Two-stage estimation of the combination of location and scale parameter of the exponential distribution under the constraint of bounded risk per unit cost index Comparison of Gini indices using sequential approach: Application to the U.S. Small Business Administration data An ARL-unbiased modified chart for monitoring autoregressive counts with geometric marginal distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1