圆纹蜂(膜翅目:蜂科):探索形态学数据的极限以解决一个系统发育的难题

IF 3.2 1区 农林科学 Q1 ENTOMOLOGY Insect Systematics and Diversity Pub Date : 2021-05-01 DOI:10.1093/isd/ixab008
D. Porto, E. A. Almeida
{"title":"圆纹蜂(膜翅目:蜂科):探索形态学数据的极限以解决一个系统发育的难题","authors":"D. Porto, E. A. Almeida","doi":"10.1093/isd/ixab008","DOIUrl":null,"url":null,"abstract":"Abstract Corbiculate bees comprise a distinctive radiation of animals including many familiar species, such as honey bees and bumble bees. The group exhibits a broad variety of morphologies and behaviors, including solitary, social, and cleptoparasitic lifestyles. Since corbiculate bees play a critical role for the interpretation of eusocial behaviors, understanding their phylogeny is crucial to explain patterns and mechanisms of social evolution. Despite advances to unveil corbiculate relationships employing genomic data, the drivers of conflict between molecular and morphological hypotheses are still not fully understood. Morphological datasets favor a single origin for highly eusocial behaviors (i.e., Apini + Meliponini) whereas molecular datasets favor other scenarios (e.g., Bombini + Meliponini). Explanations for this incongruence have been suggested, including quality, quantity, and source of data or methodological issues. In this work we tackled this problem by generating the most extensive morphological dataset for the corbiculate bee species by exploring characters from all body regions, including external and internal adult skeletal anatomy. We produced a matrix with 289 characters for 53 taxa of Apidae, including 24 corbiculate bees. We explored different analyses and optimality criteria including extended implied weights parsimony and two partitioning schemes for Bayesian inferences. We contrasted hypotheses with Bayesian topological tests and conducted analyses to investigate if characters were prone to concerted convergence. Our results are congruent with the conclusions of previous studies based on morphology, recovering Apini sister to Meliponini and both of them together sister to Bombini. Finally, we provide our interpretations on the corbiculate controversy and provide a conciliatory scenario about this issue.","PeriodicalId":48498,"journal":{"name":"Insect Systematics and Diversity","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Corbiculate Bees (Hymenoptera: Apidae): Exploring the Limits of Morphological Data to Solve a Hard Phylogenetic Problem\",\"authors\":\"D. Porto, E. A. Almeida\",\"doi\":\"10.1093/isd/ixab008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Corbiculate bees comprise a distinctive radiation of animals including many familiar species, such as honey bees and bumble bees. The group exhibits a broad variety of morphologies and behaviors, including solitary, social, and cleptoparasitic lifestyles. Since corbiculate bees play a critical role for the interpretation of eusocial behaviors, understanding their phylogeny is crucial to explain patterns and mechanisms of social evolution. Despite advances to unveil corbiculate relationships employing genomic data, the drivers of conflict between molecular and morphological hypotheses are still not fully understood. Morphological datasets favor a single origin for highly eusocial behaviors (i.e., Apini + Meliponini) whereas molecular datasets favor other scenarios (e.g., Bombini + Meliponini). Explanations for this incongruence have been suggested, including quality, quantity, and source of data or methodological issues. In this work we tackled this problem by generating the most extensive morphological dataset for the corbiculate bee species by exploring characters from all body regions, including external and internal adult skeletal anatomy. We produced a matrix with 289 characters for 53 taxa of Apidae, including 24 corbiculate bees. We explored different analyses and optimality criteria including extended implied weights parsimony and two partitioning schemes for Bayesian inferences. We contrasted hypotheses with Bayesian topological tests and conducted analyses to investigate if characters were prone to concerted convergence. Our results are congruent with the conclusions of previous studies based on morphology, recovering Apini sister to Meliponini and both of them together sister to Bombini. Finally, we provide our interpretations on the corbiculate controversy and provide a conciliatory scenario about this issue.\",\"PeriodicalId\":48498,\"journal\":{\"name\":\"Insect Systematics and Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Systematics and Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/isd/ixab008\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Systematics and Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/isd/ixab008","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

摘要:黑蝶是一种独特的辐射动物,包括许多熟悉的物种,如蜜蜂和大黄蜂。该群体表现出广泛的形态和行为,包括孤独、社交和寄生生活方式。由于球茎蜂在解释真社会行为方面发挥着关键作用,了解它们的系统发育对于解释社会进化的模式和机制至关重要。尽管利用基因组数据揭示了corbiculate关系取得了进展,但分子和形态学假设之间冲突的驱动因素仍不完全清楚。形态学数据集支持高度真社会行为的单一来源(即Apini+Meliponini),而分子数据集支持其他场景(例如Bombini+Meliponi)。有人提出了对这种不一致的解释,包括数据的质量、数量和来源或方法问题。在这项工作中,我们通过探索所有身体区域的特征,包括成年蜜蜂的外部和内部骨骼解剖,生成了最广泛的喙蜂物种形态数据集,从而解决了这个问题。我们为蜂科的53个分类群,包括24只伞状蜜蜂,制作了一个289个性状的基质。我们探索了不同的分析和最优性标准,包括贝叶斯推断的扩展隐含权重简约性和两个划分方案。我们将假设与贝叶斯拓扑测试进行了对比,并进行了分析,以调查特征是否倾向于一致收敛。我们的结果与之前基于形态学的研究结论一致,即Apini的妹妹恢复为Meliponini,他们两个都是Bombini的妹妹。最后,我们提供了我们对corbiculate争议的解释,并提供了一个关于这个问题的和解场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corbiculate Bees (Hymenoptera: Apidae): Exploring the Limits of Morphological Data to Solve a Hard Phylogenetic Problem
Abstract Corbiculate bees comprise a distinctive radiation of animals including many familiar species, such as honey bees and bumble bees. The group exhibits a broad variety of morphologies and behaviors, including solitary, social, and cleptoparasitic lifestyles. Since corbiculate bees play a critical role for the interpretation of eusocial behaviors, understanding their phylogeny is crucial to explain patterns and mechanisms of social evolution. Despite advances to unveil corbiculate relationships employing genomic data, the drivers of conflict between molecular and morphological hypotheses are still not fully understood. Morphological datasets favor a single origin for highly eusocial behaviors (i.e., Apini + Meliponini) whereas molecular datasets favor other scenarios (e.g., Bombini + Meliponini). Explanations for this incongruence have been suggested, including quality, quantity, and source of data or methodological issues. In this work we tackled this problem by generating the most extensive morphological dataset for the corbiculate bee species by exploring characters from all body regions, including external and internal adult skeletal anatomy. We produced a matrix with 289 characters for 53 taxa of Apidae, including 24 corbiculate bees. We explored different analyses and optimality criteria including extended implied weights parsimony and two partitioning schemes for Bayesian inferences. We contrasted hypotheses with Bayesian topological tests and conducted analyses to investigate if characters were prone to concerted convergence. Our results are congruent with the conclusions of previous studies based on morphology, recovering Apini sister to Meliponini and both of them together sister to Bombini. Finally, we provide our interpretations on the corbiculate controversy and provide a conciliatory scenario about this issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
8.80%
发文量
34
期刊最新文献
Correction to: Webs of intrigue: museum genomics elucidate relationships of the marronoid spider clade (Araneae) Exploring the mitogenomes of Batracomorphus (Hemiptera: Cicadellidae: Iassinae): new insights from structural diversity and phylogenomic analyses Skimming the skaters: genome skimming improves phylogenetic resolution of Halobatinae (Hemiptera: Gerridae) Twelve more bulky genomes in the Polyneoptera: characterizing the Order Embioptera The parasitic louse genus Myrsidea (Amblycera: Menoponidae): a comprehensive review and world checklist
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1