链烷醇胺湿线柱吸收二氧化碳和硫化氢污染物的模拟

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-01-03 DOI:10.1515/cppm-2022-0056
Amin Jasour, R. Alizadeh, Hesam Ahmadian
{"title":"链烷醇胺湿线柱吸收二氧化碳和硫化氢污染物的模拟","authors":"Amin Jasour, R. Alizadeh, Hesam Ahmadian","doi":"10.1515/cppm-2022-0056","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the modeling of flow equations and associated transported phenomena in wetted-wire columns (WWC) has been carried out by using the CFD method. The studied processes in this column included the absorption of H2S and CO2 gases from the gas stream by absorbent solution. In this regard, laboratory results were available only for CO2 absorption in a column with a single wire or 109 wires. Moreover, the fact that modeling of a wetted-wire column needs robust hardware. As a result, firstly, the process of CO2 absorption with monoethanolamine (MEA) solution in a column with a wire was modeled by COMSOL Multiphysics version 5.6. Then, the results of various parameters were compared with laboratory results (the error percentage was calculated to be 2.4%). It was observed that by increasing the liquid flow rate, the distance between the beads decreased and beads with larger diameters and higher velocities formed. Meanwhile, for the first time, the temperature profile inside the column was determined along the column, the temperature of the liquid phase increased. The gas stream after a slight increase in temperature, left the column with a temperature close to the incoming liquid. After model validation, other processes were investigated, resulting from changing desired gas for separation or liquid solution. Finally, different absorbents’ abilities were predicted to absorb gaseous pollutants and obtained that in terms of absorption efficiency, second-type alkanolamines perform better than other types in the simultaneous absorption of CO2 and H2S.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of carbon dioxide and hydrogen sulfide pollutants absorption in wetted-wire columns with alkanolamines\",\"authors\":\"Amin Jasour, R. Alizadeh, Hesam Ahmadian\",\"doi\":\"10.1515/cppm-2022-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the modeling of flow equations and associated transported phenomena in wetted-wire columns (WWC) has been carried out by using the CFD method. The studied processes in this column included the absorption of H2S and CO2 gases from the gas stream by absorbent solution. In this regard, laboratory results were available only for CO2 absorption in a column with a single wire or 109 wires. Moreover, the fact that modeling of a wetted-wire column needs robust hardware. As a result, firstly, the process of CO2 absorption with monoethanolamine (MEA) solution in a column with a wire was modeled by COMSOL Multiphysics version 5.6. Then, the results of various parameters were compared with laboratory results (the error percentage was calculated to be 2.4%). It was observed that by increasing the liquid flow rate, the distance between the beads decreased and beads with larger diameters and higher velocities formed. Meanwhile, for the first time, the temperature profile inside the column was determined along the column, the temperature of the liquid phase increased. The gas stream after a slight increase in temperature, left the column with a temperature close to the incoming liquid. After model validation, other processes were investigated, resulting from changing desired gas for separation or liquid solution. Finally, different absorbents’ abilities were predicted to absorb gaseous pollutants and obtained that in terms of absorption efficiency, second-type alkanolamines perform better than other types in the simultaneous absorption of CO2 and H2S.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2022-0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2022-0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要在这项工作中,使用CFD方法对浸润线柱(WWC)中的流动方程和相关的传输现象进行了建模。该塔中研究的工艺包括通过吸收剂溶液从气流中吸收H2S和CO2气体。在这方面,实验室结果仅可用于在具有单根金属丝或109根金属丝的柱中吸收CO2。此外,浸润线柱的建模需要稳健的硬件。因此,首先,用COMSOL Multiphysics 5.6版对单乙醇胺(MEA)溶液在带金属丝的柱中吸收CO2的过程进行了建模。然后,将各种参数的结果与实验室结果进行比较(计算出误差百分比为2.4%)。观察到,随着液体流速的增加,珠粒之间的距离减小,形成了直径更大、速度更高的珠粒。同时,首次确定了柱内沿柱的温度分布,液相温度升高。气流在温度稍微升高后,以接近进入液体的温度离开柱。在模型验证后,对其他过程进行了研究,这些过程是由改变所需的分离气体或液体溶液引起的。最后,对不同吸收剂吸收气态污染物的能力进行了预测,得出就吸收效率而言,第二类链烷醇胺在同时吸收CO2和H2S方面比其他类型的链烷醇酰胺表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of carbon dioxide and hydrogen sulfide pollutants absorption in wetted-wire columns with alkanolamines
Abstract In this work, the modeling of flow equations and associated transported phenomena in wetted-wire columns (WWC) has been carried out by using the CFD method. The studied processes in this column included the absorption of H2S and CO2 gases from the gas stream by absorbent solution. In this regard, laboratory results were available only for CO2 absorption in a column with a single wire or 109 wires. Moreover, the fact that modeling of a wetted-wire column needs robust hardware. As a result, firstly, the process of CO2 absorption with monoethanolamine (MEA) solution in a column with a wire was modeled by COMSOL Multiphysics version 5.6. Then, the results of various parameters were compared with laboratory results (the error percentage was calculated to be 2.4%). It was observed that by increasing the liquid flow rate, the distance between the beads decreased and beads with larger diameters and higher velocities formed. Meanwhile, for the first time, the temperature profile inside the column was determined along the column, the temperature of the liquid phase increased. The gas stream after a slight increase in temperature, left the column with a temperature close to the incoming liquid. After model validation, other processes were investigated, resulting from changing desired gas for separation or liquid solution. Finally, different absorbents’ abilities were predicted to absorb gaseous pollutants and obtained that in terms of absorption efficiency, second-type alkanolamines perform better than other types in the simultaneous absorption of CO2 and H2S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Heat transfer efficiency in gas-solid fluidized beds with flat and corrugated walls. Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor Energy, exergy, economic, and environmental analysis of natural gas sweetening process using lean vapor compression: a comparison study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1