利用热弹性应力分析评估复合材料层压板的疲劳损伤

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2023-10-01 DOI:10.1016/j.jcomc.2023.100377
A. Quinlan , O. Castro , J.M. Dulieu-Barton
{"title":"利用热弹性应力分析评估复合材料层压板的疲劳损伤","authors":"A. Quinlan ,&nbsp;O. Castro ,&nbsp;J.M. Dulieu-Barton","doi":"10.1016/j.jcomc.2023.100377","DOIUrl":null,"url":null,"abstract":"<div><p>A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysis\",\"authors\":\"A. Quinlan ,&nbsp;O. Castro ,&nbsp;J.M. Dulieu-Barton\",\"doi\":\"10.1016/j.jcomc.2023.100377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682023000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682023000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用热弹性应力分析(TSA)研究层压纤维增强聚合物复合材料(FRP)疲劳降解的新方法。该模型考虑了非绝热条件、材料温度对材料性能的影响以及材料因损伤而退化的刚度影响。来自文献的实验数据用于验证模型中模拟传热的部分,这导致热弹性响应的非绝热贡献。研究中使用的是风力涡轮机叶片制造中具有代表性的E-glass FRP样品,这对TSA来说是一个具有挑战性的命题。循环荷载作用下隧道裂纹的演化引起刚度退化和热弹性响应的变化。所提出的模型的附加特征被证明是解释热弹性响应所必需的。与以往的TSA方法相比,该模型提高了与实验数据的一致性。因此,提出了一个广义的框架,以纳入影响材料因疲劳载荷而退化的热弹性响应的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysis

A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1