{"title":"利用热弹性应力分析评估复合材料层压板的疲劳损伤","authors":"A. Quinlan , O. Castro , J.M. Dulieu-Barton","doi":"10.1016/j.jcomc.2023.100377","DOIUrl":null,"url":null,"abstract":"<div><p>A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysis\",\"authors\":\"A. Quinlan , O. Castro , J.M. Dulieu-Barton\",\"doi\":\"10.1016/j.jcomc.2023.100377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682023000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682023000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Towards assessment of fatigue damage in composite laminates using thermoelastic stress analysis
A new approach that utilizes Thermoelastic Stress Analysis (TSA) is proposed to investigate fatigue-induced material degradation in laminated fiber-reinforced polymer composites (FRP). The proposed model accounts for non-adiabatic conditions, the effects of the material temperature on the material properties, and the effects of stiffness material degradation due to damage. Experimental data from the literature is used to validate the part of the model that simulates the heat transfer, which results in a non-adiabatic contribution to the thermoelastic response. Specimens made from E-glass FRP representative of those used in wind turbine blade manufacture are used in the study, which make a challenging proposition for TSA. The evolution of tunneling cracks caused by cyclic loading causes stiffness degradation and changes in the thermoelastic response. The added features of the proposed model are shown to be necessary to interpret the thermoelastic response. The model improves correspondence with experimental data compared to previous TSA methods. Hence a generalized framework is proposed for incorporating the mechanisms that affect the thermoelastic response as materials degrade due to fatigue loading.