A. Okuyama, Masaya Takahashi, K. Date, K. Hosaka, Hidehiko Murata, T. Tabata, Ryoko Yoshino
{"title":"基于两年在轨数据的Himawari-8/AHI辐射定标验证","authors":"A. Okuyama, Masaya Takahashi, K. Date, K. Hosaka, Hidehiko Murata, T. Tabata, Ryoko Yoshino","doi":"10.2151/JMSJ.2018-033","DOIUrl":null,"url":null,"abstract":"The new geostationary (GEO) meteorological satellite of the Japan Meteorological Agency (JMA), Himawari-8, entered operation on 7 July 2015. Himawari-8 features the new 16-band Advanced Himawari Imager (AHI), whose spatial resolution and observation frequency are improved over those of its predecessor MTSAT-series satellites. These improvements will bring about unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. In view of the essential nature of navigation and radiometric calibration in fully leveraging the imager’s potential, this study reports on the current status of calibration for the AHI. Image navigation is accurate to within 1 km, and band-to-band coregistration has also been validated. Infrared (IR) band calibration is accurate to within 0.2 K with no significant diurnal variation and is being validated using an approach developed under the Global Space-based Inter-Calibration System (GSICS) framework. Validation approaches are currently being tested for the visible and near-IR (NIR) bands. Two such approaches were compared and found to produce largely consistent results.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"1 1","pages":"91-109"},"PeriodicalIF":2.4000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2151/JMSJ.2018-033","citationCount":"23","resultStr":"{\"title\":\"Validation of Himawari-8/AHI Radiometric Calibration Based on Two Years of In-Orbit Data\",\"authors\":\"A. Okuyama, Masaya Takahashi, K. Date, K. Hosaka, Hidehiko Murata, T. Tabata, Ryoko Yoshino\",\"doi\":\"10.2151/JMSJ.2018-033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new geostationary (GEO) meteorological satellite of the Japan Meteorological Agency (JMA), Himawari-8, entered operation on 7 July 2015. Himawari-8 features the new 16-band Advanced Himawari Imager (AHI), whose spatial resolution and observation frequency are improved over those of its predecessor MTSAT-series satellites. These improvements will bring about unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. In view of the essential nature of navigation and radiometric calibration in fully leveraging the imager’s potential, this study reports on the current status of calibration for the AHI. Image navigation is accurate to within 1 km, and band-to-band coregistration has also been validated. Infrared (IR) band calibration is accurate to within 0.2 K with no significant diurnal variation and is being validated using an approach developed under the Global Space-based Inter-Calibration System (GSICS) framework. Validation approaches are currently being tested for the visible and near-IR (NIR) bands. Two such approaches were compared and found to produce largely consistent results.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"1 1\",\"pages\":\"91-109\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2151/JMSJ.2018-033\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/JMSJ.2018-033\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/JMSJ.2018-033","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Validation of Himawari-8/AHI Radiometric Calibration Based on Two Years of In-Orbit Data
The new geostationary (GEO) meteorological satellite of the Japan Meteorological Agency (JMA), Himawari-8, entered operation on 7 July 2015. Himawari-8 features the new 16-band Advanced Himawari Imager (AHI), whose spatial resolution and observation frequency are improved over those of its predecessor MTSAT-series satellites. These improvements will bring about unprecedented levels of performance in nowcasting services and short-range weather forecasting systems. In view of the essential nature of navigation and radiometric calibration in fully leveraging the imager’s potential, this study reports on the current status of calibration for the AHI. Image navigation is accurate to within 1 km, and band-to-band coregistration has also been validated. Infrared (IR) band calibration is accurate to within 0.2 K with no significant diurnal variation and is being validated using an approach developed under the Global Space-based Inter-Calibration System (GSICS) framework. Validation approaches are currently being tested for the visible and near-IR (NIR) bands. Two such approaches were compared and found to produce largely consistent results.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.