G. Granello, A. Palermo, S. Pampanin, T. Smith, F. Sarti
{"title":"后张力损失对pre - lam框架地震反应的影响","authors":"G. Granello, A. Palermo, S. Pampanin, T. Smith, F. Sarti","doi":"10.5459/BNZSEE.51.2.57-69","DOIUrl":null,"url":null,"abstract":"Since 2010, twelve post-tensioned timber (Pres-Lam) buildings have been constructed throughout the world. In high seismic areas, Pres-Lam technology typically combines unbonded post-tensioning tendons and supplemental damping devices to provide moment capacity to beam-column, wall-foundation or column-foundation connections. Over time creep within the timber elements leads to losses in post-tensioning forces reducing the connection moment capacity. This paper analyses how different post-tensioning loss scenarios, depending on the beam-column joint detailing, impact the building’s seismic response. Two case study buildings were designed and investigated using the Acceleration Displacement Response Spectrum (ADRS) method and Non-Linear Time History Analysis (NLTHA) to predict seismic performance. These buildings were considered to be located in areas of high and low seismic risk, leading to designs with and without the use of damping devices, respectively. The results show that the building with additional damping responded with similar peak displacements, even under extreme loss scenarios. In comparison, when supplemental damping was not used, peak displacements increased significantly with post tensioning losses.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The implications of post-tensioning losses on the seismic response of Pres-Lam frames\",\"authors\":\"G. Granello, A. Palermo, S. Pampanin, T. Smith, F. Sarti\",\"doi\":\"10.5459/BNZSEE.51.2.57-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2010, twelve post-tensioned timber (Pres-Lam) buildings have been constructed throughout the world. In high seismic areas, Pres-Lam technology typically combines unbonded post-tensioning tendons and supplemental damping devices to provide moment capacity to beam-column, wall-foundation or column-foundation connections. Over time creep within the timber elements leads to losses in post-tensioning forces reducing the connection moment capacity. This paper analyses how different post-tensioning loss scenarios, depending on the beam-column joint detailing, impact the building’s seismic response. Two case study buildings were designed and investigated using the Acceleration Displacement Response Spectrum (ADRS) method and Non-Linear Time History Analysis (NLTHA) to predict seismic performance. These buildings were considered to be located in areas of high and low seismic risk, leading to designs with and without the use of damping devices, respectively. The results show that the building with additional damping responded with similar peak displacements, even under extreme loss scenarios. In comparison, when supplemental damping was not used, peak displacements increased significantly with post tensioning losses.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/BNZSEE.51.2.57-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/BNZSEE.51.2.57-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
The implications of post-tensioning losses on the seismic response of Pres-Lam frames
Since 2010, twelve post-tensioned timber (Pres-Lam) buildings have been constructed throughout the world. In high seismic areas, Pres-Lam technology typically combines unbonded post-tensioning tendons and supplemental damping devices to provide moment capacity to beam-column, wall-foundation or column-foundation connections. Over time creep within the timber elements leads to losses in post-tensioning forces reducing the connection moment capacity. This paper analyses how different post-tensioning loss scenarios, depending on the beam-column joint detailing, impact the building’s seismic response. Two case study buildings were designed and investigated using the Acceleration Displacement Response Spectrum (ADRS) method and Non-Linear Time History Analysis (NLTHA) to predict seismic performance. These buildings were considered to be located in areas of high and low seismic risk, leading to designs with and without the use of damping devices, respectively. The results show that the building with additional damping responded with similar peak displacements, even under extreme loss scenarios. In comparison, when supplemental damping was not used, peak displacements increased significantly with post tensioning losses.