基于ha的真皮填充剂:下游工艺比较,通过有效的HPLC-MS分析进行杂质定量,以及体内停留时间研究

C. Guarise, Carlo Barbera, M. Pavan, S. Panfilo, R. Beninatto, D. Galesso
{"title":"基于ha的真皮填充剂:下游工艺比较,通过有效的HPLC-MS分析进行杂质定量,以及体内停留时间研究","authors":"C. Guarise, Carlo Barbera, M. Pavan, S. Panfilo, R. Beninatto, D. Galesso","doi":"10.1177/2280800019867075","DOIUrl":null,"url":null,"abstract":"The success of hyaluronic acid (HA)-based dermal fillers, with more than 2 million minimally invasive procedures conducted in 2016 in the US alone, is due to their hygroscopic properties of biocompatibility and reversibility. The type and density of HA cross-linkage, as well as the manufacturing technology, may influence not only the in vivo persistence but also the safety profile of dermal fillers. 1,4-Butanediol diglycidyl ether (BDDE) is the cross-linker used in most market-leading HA fillers; 1,4-butanediol di-(propan-2,3-diolyl) ether (BDPE) is the major impurity obtained from the HA–BDDE cross-linking (HBC) process. In this work, a new process to obtain high purity HBC fillers was developed. A new HPLC-MS method was validated for the quantification of BDPE content in HBC dermal fillers. In vitro cytotoxicity of BDPE was evaluated in fibroblasts (IC50 = 0.48 mg/mL). The viscoelasticity was monitored during the shelf-life of the HBC-10% hydrogel and was correlated with in vitro hyaluronidase resistance and in vivo residence time in a rabbit model. This analysis showed that elasticity is the best parameter to predict the in vivo residence time. Finally, a series of parameters were investigated in certain marketed dermal fillers and were compared with the results of the HBC-10% hydrogel.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2280800019867075","citationCount":"14","resultStr":"{\"title\":\"HA-based dermal filler: downstream process comparison, impurity quantitation by validated HPLC-MS analysis, and in vivo residence time study\",\"authors\":\"C. Guarise, Carlo Barbera, M. Pavan, S. Panfilo, R. Beninatto, D. Galesso\",\"doi\":\"10.1177/2280800019867075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of hyaluronic acid (HA)-based dermal fillers, with more than 2 million minimally invasive procedures conducted in 2016 in the US alone, is due to their hygroscopic properties of biocompatibility and reversibility. The type and density of HA cross-linkage, as well as the manufacturing technology, may influence not only the in vivo persistence but also the safety profile of dermal fillers. 1,4-Butanediol diglycidyl ether (BDDE) is the cross-linker used in most market-leading HA fillers; 1,4-butanediol di-(propan-2,3-diolyl) ether (BDPE) is the major impurity obtained from the HA–BDDE cross-linking (HBC) process. In this work, a new process to obtain high purity HBC fillers was developed. A new HPLC-MS method was validated for the quantification of BDPE content in HBC dermal fillers. In vitro cytotoxicity of BDPE was evaluated in fibroblasts (IC50 = 0.48 mg/mL). The viscoelasticity was monitored during the shelf-life of the HBC-10% hydrogel and was correlated with in vitro hyaluronidase resistance and in vivo residence time in a rabbit model. This analysis showed that elasticity is the best parameter to predict the in vivo residence time. Finally, a series of parameters were investigated in certain marketed dermal fillers and were compared with the results of the HBC-10% hydrogel.\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2280800019867075\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2280800019867075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2280800019867075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

基于透明质酸(HA)的真皮填充物的成功,仅2016年在美国就进行了200多万次微创手术,这是由于它们具有生物相容性和可逆性的吸湿特性。HA交联的类型和密度,以及制造技术,不仅可能影响真皮填充物的体内持久性,还可能影响其安全性。1,4-丁二醇二缩水甘油醚(BDDE)是大多数市场领先的HA填料中使用的交联剂;1,4-丁二醇二(丙-2,3-二醇)醚(BDPE)是HA–BDDE交联(HBC)过程中获得的主要杂质。本工作开发了一种获得高纯度HBC填料的新工艺。验证了一种新的HPLC-MS方法用于HBC真皮填充物中BDPE含量的定量。在成纤维细胞中评估BDPE的体外细胞毒性(IC50=0.48mg/mL)。在HBC-10%水凝胶的保质期内监测粘弹性,并在兔模型中与体外透明质酸酶耐药性和体内停留时间相关。该分析表明,弹性是预测体内停留时间的最佳参数。最后,在某些市场上销售的真皮填充物中研究了一系列参数,并与HBC-10%水凝胶的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HA-based dermal filler: downstream process comparison, impurity quantitation by validated HPLC-MS analysis, and in vivo residence time study
The success of hyaluronic acid (HA)-based dermal fillers, with more than 2 million minimally invasive procedures conducted in 2016 in the US alone, is due to their hygroscopic properties of biocompatibility and reversibility. The type and density of HA cross-linkage, as well as the manufacturing technology, may influence not only the in vivo persistence but also the safety profile of dermal fillers. 1,4-Butanediol diglycidyl ether (BDDE) is the cross-linker used in most market-leading HA fillers; 1,4-butanediol di-(propan-2,3-diolyl) ether (BDPE) is the major impurity obtained from the HA–BDDE cross-linking (HBC) process. In this work, a new process to obtain high purity HBC fillers was developed. A new HPLC-MS method was validated for the quantification of BDPE content in HBC dermal fillers. In vitro cytotoxicity of BDPE was evaluated in fibroblasts (IC50 = 0.48 mg/mL). The viscoelasticity was monitored during the shelf-life of the HBC-10% hydrogel and was correlated with in vitro hyaluronidase resistance and in vivo residence time in a rabbit model. This analysis showed that elasticity is the best parameter to predict the in vivo residence time. Finally, a series of parameters were investigated in certain marketed dermal fillers and were compared with the results of the HBC-10% hydrogel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
期刊最新文献
Flow investigation of second grade micropolar nanofluid with porous medium over an exponentially stretching sheet β-TCP/DCPD-PHBV (40%/60%): Biomaterial made from bioceramic and biopolymer for bone regeneration; investigation of intrinsic properties Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way The effects of several operative parameters on the grafting of selected grafting agents on a polyamide six (PA6) fiber surface A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1