{"title":"欧洲相互比较研究作为完善辐照食品检测方法的工具","authors":"G. Guzik, J. Michalik","doi":"10.2478/nuka-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present the results of inter-comparison studies on identification of irradiated food carried out by the leading European laboratories from 1991 to 2018. In 1990s, the Federal Institute for Health Protection of Consumers and Veterinary Medicine in Germany played the leading role in the organization of the inter-laboratory tests on this subject. At the beginning of the present century, the Spanish Agency for Food Safety and Nutrition and Food National Spanish Centre took over this role. In total, 47 international tests were carried out in which nearly 500 samples of alimentary products were analysed in 37 laboratories from 14 European countries. The tests were aimed at proving the reliability of analytical methods – thermoluminescence (TL), photostimulated luminescence (PSL), and electron paramagnetic resonance (EPR) spectroscopy – for identification of specific irradiated food products and to control the analytical skills and experience of participating laboratories. The results made possible a discussion on why some irradiated food samples are more difficult for identification. In general, the tests showed that TL measurements of products such as herbs, nuts, peppers, and raisins, and EPR studies of fish and chicken bones, fresh strawberries, and dried fruits could be used as reliable control methods. The challenge that control laboratories are facing now, is related to the identification of complex food products such as diet supplements or biopharmaceuticals, in which only some additives are irradiated.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"European inter-comparison studies as a tool for perfecting irradiated food detection methods\",\"authors\":\"G. Guzik, J. Michalik\",\"doi\":\"10.2478/nuka-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present the results of inter-comparison studies on identification of irradiated food carried out by the leading European laboratories from 1991 to 2018. In 1990s, the Federal Institute for Health Protection of Consumers and Veterinary Medicine in Germany played the leading role in the organization of the inter-laboratory tests on this subject. At the beginning of the present century, the Spanish Agency for Food Safety and Nutrition and Food National Spanish Centre took over this role. In total, 47 international tests were carried out in which nearly 500 samples of alimentary products were analysed in 37 laboratories from 14 European countries. The tests were aimed at proving the reliability of analytical methods – thermoluminescence (TL), photostimulated luminescence (PSL), and electron paramagnetic resonance (EPR) spectroscopy – for identification of specific irradiated food products and to control the analytical skills and experience of participating laboratories. The results made possible a discussion on why some irradiated food samples are more difficult for identification. In general, the tests showed that TL measurements of products such as herbs, nuts, peppers, and raisins, and EPR studies of fish and chicken bones, fresh strawberries, and dried fruits could be used as reliable control methods. The challenge that control laboratories are facing now, is related to the identification of complex food products such as diet supplements or biopharmaceuticals, in which only some additives are irradiated.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2021-0013\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2021-0013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
European inter-comparison studies as a tool for perfecting irradiated food detection methods
Abstract In this paper, we present the results of inter-comparison studies on identification of irradiated food carried out by the leading European laboratories from 1991 to 2018. In 1990s, the Federal Institute for Health Protection of Consumers and Veterinary Medicine in Germany played the leading role in the organization of the inter-laboratory tests on this subject. At the beginning of the present century, the Spanish Agency for Food Safety and Nutrition and Food National Spanish Centre took over this role. In total, 47 international tests were carried out in which nearly 500 samples of alimentary products were analysed in 37 laboratories from 14 European countries. The tests were aimed at proving the reliability of analytical methods – thermoluminescence (TL), photostimulated luminescence (PSL), and electron paramagnetic resonance (EPR) spectroscopy – for identification of specific irradiated food products and to control the analytical skills and experience of participating laboratories. The results made possible a discussion on why some irradiated food samples are more difficult for identification. In general, the tests showed that TL measurements of products such as herbs, nuts, peppers, and raisins, and EPR studies of fish and chicken bones, fresh strawberries, and dried fruits could be used as reliable control methods. The challenge that control laboratories are facing now, is related to the identification of complex food products such as diet supplements or biopharmaceuticals, in which only some additives are irradiated.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.