采用交叉堆叠结构的碳纳米纤维薄膜制备柔性应变传感器具有广泛的应用前景

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Smart and Nano Materials Pub Date : 2022-06-21 DOI:10.1080/19475411.2022.2091059
Tao Yan, Yuting Wu, Jian Tang, Z. Pan
{"title":"采用交叉堆叠结构的碳纳米纤维薄膜制备柔性应变传感器具有广泛的应用前景","authors":"Tao Yan, Yuting Wu, Jian Tang, Z. Pan","doi":"10.1080/19475411.2022.2091059","DOIUrl":null,"url":null,"abstract":"ABSTRACT Carbon nanofibers (CNFs) with excellent conductivity and stability have become a promising material to design the strain sensing network. To date, however, the effect of the stacked structure of CNF membrane on the sensing performance has rarely been studied. In this work, we reported a high-performance sensor based on the cross-stacked aligned CNF membrane. The effects of cross-stacked structures on the sensing characteristics were systematically investigated. The flexible strain sensor could capture low detection limit (<0.1%) with a gauge factor (GF) of 4.24 and wide strain range up to 130%. The uniform GF value reached 2050 when the strain was in the range of 100–130%. In addition, the high linearity under 40% strain (>0.998), excellent durability and quick response time (<200 ms) were demonstrated. The excellent comprehensive performances were simultaneously obtained. The sensor could be used in extensive applications, such as monitoring body movements and distinguishing the track of writing. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"13 1","pages":"432 - 446"},"PeriodicalIF":4.5000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flexible strain sensors fabricated using aligned carbon nanofiber membranes with cross-stacked structure for extensive applications\",\"authors\":\"Tao Yan, Yuting Wu, Jian Tang, Z. Pan\",\"doi\":\"10.1080/19475411.2022.2091059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Carbon nanofibers (CNFs) with excellent conductivity and stability have become a promising material to design the strain sensing network. To date, however, the effect of the stacked structure of CNF membrane on the sensing performance has rarely been studied. In this work, we reported a high-performance sensor based on the cross-stacked aligned CNF membrane. The effects of cross-stacked structures on the sensing characteristics were systematically investigated. The flexible strain sensor could capture low detection limit (<0.1%) with a gauge factor (GF) of 4.24 and wide strain range up to 130%. The uniform GF value reached 2050 when the strain was in the range of 100–130%. In addition, the high linearity under 40% strain (>0.998), excellent durability and quick response time (<200 ms) were demonstrated. The excellent comprehensive performances were simultaneously obtained. The sensor could be used in extensive applications, such as monitoring body movements and distinguishing the track of writing. Graphical abstract\",\"PeriodicalId\":48516,\"journal\":{\"name\":\"International Journal of Smart and Nano Materials\",\"volume\":\"13 1\",\"pages\":\"432 - 446\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart and Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/19475411.2022.2091059\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2022.2091059","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

摘要碳纳米纤维具有良好的导电性和稳定性,已成为设计应变传感网络的一种很有前途的材料。然而,到目前为止,很少研究CNF膜的堆叠结构对传感性能的影响。在这项工作中,我们报道了一种基于交叉堆叠排列的CNF膜的高性能传感器。系统地研究了交叉堆叠结构对传感特性的影响。柔性应变传感器可以捕获低检测限(0.998)、优异的耐用性和快速响应时间(<200ms)。同时获得了优异的综合性能。该传感器可用于广泛的应用,如监测身体运动和区分书写轨迹。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible strain sensors fabricated using aligned carbon nanofiber membranes with cross-stacked structure for extensive applications
ABSTRACT Carbon nanofibers (CNFs) with excellent conductivity and stability have become a promising material to design the strain sensing network. To date, however, the effect of the stacked structure of CNF membrane on the sensing performance has rarely been studied. In this work, we reported a high-performance sensor based on the cross-stacked aligned CNF membrane. The effects of cross-stacked structures on the sensing characteristics were systematically investigated. The flexible strain sensor could capture low detection limit (<0.1%) with a gauge factor (GF) of 4.24 and wide strain range up to 130%. The uniform GF value reached 2050 when the strain was in the range of 100–130%. In addition, the high linearity under 40% strain (>0.998), excellent durability and quick response time (<200 ms) were demonstrated. The excellent comprehensive performances were simultaneously obtained. The sensor could be used in extensive applications, such as monitoring body movements and distinguishing the track of writing. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Smart and Nano Materials
International Journal of Smart and Nano Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.30
自引率
5.10%
发文量
39
审稿时长
11 weeks
期刊介绍: The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.
期刊最新文献
Confined gas transport in low-dimensional materials The rate dependence of the dielectric strength of dielectric elastomers Multi-stable straw-like carbon nanotubes for mechanical programmability at microscale Selective and asymmetric ion transport in covalent organic framework-based two-dimensional nanofluidic devices Nanodiamond reinforced self-healing and transparent poly(urethane–urea) protective coating for scratch resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1