会计研究中使用生成回归函数时的标准误差偏差

IF 4.9 2区 管理学 Q1 BUSINESS, FINANCE Journal of Accounting Research Pub Date : 2022-12-26 DOI:10.1111/1475-679X.12470
WEI CHEN, PAUL HRIBAR, SAM MELESSA
{"title":"会计研究中使用生成回归函数时的标准误差偏差","authors":"WEI CHEN,&nbsp;PAUL HRIBAR,&nbsp;SAM MELESSA","doi":"10.1111/1475-679X.12470","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We analyze the standard error bias associated with the use of generated regressors—independent variables generated from first-step regressions—in accounting research settings. Under general conditions, generated regressors do not affect the consistency of coefficient estimates. However, commonly used generated regressors can cause standard errors to be understated. Problematic generated regressors include predicted values, coefficient estimates, and measures derived from these estimates. Widely used generated regressors in accounting include measures of earnings persistence, normal accruals, litigation risk, and conditional conservatism. Using simple regression models and simulation, we demonstrate how generated regressors can produce understated standard errors in accounting research settings. We also demonstrate how the magnitude of the standard error bias is inversely related to the precision of the generated regressor. Finally, we discuss bootstrapping as a correction for the bias and demonstrate the pairs cluster bootstrap as a tool to improve inferences in common accounting settings involving generated regressors.</p>\n </div>","PeriodicalId":48414,"journal":{"name":"Journal of Accounting Research","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Standard Error Biases When Using Generated Regressors in Accounting Research\",\"authors\":\"WEI CHEN,&nbsp;PAUL HRIBAR,&nbsp;SAM MELESSA\",\"doi\":\"10.1111/1475-679X.12470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We analyze the standard error bias associated with the use of generated regressors—independent variables generated from first-step regressions—in accounting research settings. Under general conditions, generated regressors do not affect the consistency of coefficient estimates. However, commonly used generated regressors can cause standard errors to be understated. Problematic generated regressors include predicted values, coefficient estimates, and measures derived from these estimates. Widely used generated regressors in accounting include measures of earnings persistence, normal accruals, litigation risk, and conditional conservatism. Using simple regression models and simulation, we demonstrate how generated regressors can produce understated standard errors in accounting research settings. We also demonstrate how the magnitude of the standard error bias is inversely related to the precision of the generated regressor. Finally, we discuss bootstrapping as a correction for the bias and demonstrate the pairs cluster bootstrap as a tool to improve inferences in common accounting settings involving generated regressors.</p>\\n </div>\",\"PeriodicalId\":48414,\"journal\":{\"name\":\"Journal of Accounting Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Accounting Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1475-679X.12470\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Accounting Research","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1475-679X.12470","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

我们分析了在会计研究设置中使用生成回归器(由第一步回归产生的独立变量)相关的标准误差偏差。在一般情况下,生成的回归量不会影响系数估计的一致性。然而,通常使用的生成回归量可能会导致标准误差被低估。有问题的生成回归量包括预测值、系数估计值和从这些估计值衍生的度量。会计中广泛使用的生成回归包括盈余持续性、正常应计项目、诉讼风险和条件稳健性。使用简单的回归模型和模拟,我们展示了生成的回归量如何在会计研究设置中产生低估的标准误差。我们还演示了标准误差偏差的大小如何与生成的回归量的精度成反比。最后,我们讨论了作为偏差校正的自举,并演示了对聚类自举作为一种工具,用于改进涉及生成回归量的常见会计设置中的推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Standard Error Biases When Using Generated Regressors in Accounting Research

We analyze the standard error bias associated with the use of generated regressors—independent variables generated from first-step regressions—in accounting research settings. Under general conditions, generated regressors do not affect the consistency of coefficient estimates. However, commonly used generated regressors can cause standard errors to be understated. Problematic generated regressors include predicted values, coefficient estimates, and measures derived from these estimates. Widely used generated regressors in accounting include measures of earnings persistence, normal accruals, litigation risk, and conditional conservatism. Using simple regression models and simulation, we demonstrate how generated regressors can produce understated standard errors in accounting research settings. We also demonstrate how the magnitude of the standard error bias is inversely related to the precision of the generated regressor. Finally, we discuss bootstrapping as a correction for the bias and demonstrate the pairs cluster bootstrap as a tool to improve inferences in common accounting settings involving generated regressors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Accounting Research
Journal of Accounting Research BUSINESS, FINANCE-
CiteScore
7.80
自引率
6.80%
发文量
53
期刊介绍: The Journal of Accounting Research is a general-interest accounting journal. It publishes original research in all areas of accounting and related fields that utilizes tools from basic disciplines such as economics, statistics, psychology, and sociology. This research typically uses analytical, empirical archival, experimental, and field study methods and addresses economic questions, external and internal, in accounting, auditing, disclosure, financial reporting, taxation, and information as well as related fields such as corporate finance, investments, capital markets, law, contracting, and information economics.
期刊最新文献
How Does Judges’ Personal Exposure to Financial Fraud Affect White-Collar Sentencing? Disclosure, Patenting, and Trade Secrecy The Role of Information in Building a More Sustainable Economy: A Supply and Demand Perspective Comply or Explain: Do Firms Opportunistically Claim Trade Secrets in Mandatory Environmental Disclosure Programs? Measuring the Prevalence of Earnings Manipulations: A Novel Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1