Jagath Gunasekera, Goksu Avdan, H. F. Lee, Soon-Bok Kweon, J. Klingensmith
{"title":"研究外压对冠状动脉斑块的影响及其在冠状动脉疾病中的作用","authors":"Jagath Gunasekera, Goksu Avdan, H. F. Lee, Soon-Bok Kweon, J. Klingensmith","doi":"10.1080/03091902.2022.2081736","DOIUrl":null,"url":null,"abstract":"Abstract The risk of an acute coronary event stems from the amount and type of plaque present, as well as the fluid and structural dynamics in the coronary artery. If the plaque’s structural stress exceeds the mechanical strength, the fibrous cap may rupture and lead to thrombosis. The patient is then likely to face a sudden myocardial infarction. An association between Coronary Heart Disease (CHD) and Sudden Cardiac Death (SCD) has been long recognised. For the first time, we are reporting a correlation between applied external pressure, such as Cardiopulmonary Resuscitation (CPR), coughing, sneezing, blowing one’s nose, etc., and diseased coronary artery plaque via 3 D coronary artery models and two-way Fluid-Solid Interaction (FSI) models. Shear and von Mises stresses inside arteries and plaques have been shown to play a major role in plaque development, progression of disease, and the likelihood of plaque rupture. Our results show a drastic change in maximum shear (300%) and von Mises stresses (500%) with increasing external pressure. This change may indicate an onset of imminent plaque rupture. Furthermore, FSI modelling indicates a strong correlation between plaque thickness, location, and external pressure. With further clinical and simulation studies, this information could be helpful in understanding potential limit pressure in the CPR process for patients with CHD.","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating the effects of external pressure on coronary arteries with plaques and its role in coronary artery disease\",\"authors\":\"Jagath Gunasekera, Goksu Avdan, H. F. Lee, Soon-Bok Kweon, J. Klingensmith\",\"doi\":\"10.1080/03091902.2022.2081736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The risk of an acute coronary event stems from the amount and type of plaque present, as well as the fluid and structural dynamics in the coronary artery. If the plaque’s structural stress exceeds the mechanical strength, the fibrous cap may rupture and lead to thrombosis. The patient is then likely to face a sudden myocardial infarction. An association between Coronary Heart Disease (CHD) and Sudden Cardiac Death (SCD) has been long recognised. For the first time, we are reporting a correlation between applied external pressure, such as Cardiopulmonary Resuscitation (CPR), coughing, sneezing, blowing one’s nose, etc., and diseased coronary artery plaque via 3 D coronary artery models and two-way Fluid-Solid Interaction (FSI) models. Shear and von Mises stresses inside arteries and plaques have been shown to play a major role in plaque development, progression of disease, and the likelihood of plaque rupture. Our results show a drastic change in maximum shear (300%) and von Mises stresses (500%) with increasing external pressure. This change may indicate an onset of imminent plaque rupture. Furthermore, FSI modelling indicates a strong correlation between plaque thickness, location, and external pressure. With further clinical and simulation studies, this information could be helpful in understanding potential limit pressure in the CPR process for patients with CHD.\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2022.2081736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2022.2081736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Investigating the effects of external pressure on coronary arteries with plaques and its role in coronary artery disease
Abstract The risk of an acute coronary event stems from the amount and type of plaque present, as well as the fluid and structural dynamics in the coronary artery. If the plaque’s structural stress exceeds the mechanical strength, the fibrous cap may rupture and lead to thrombosis. The patient is then likely to face a sudden myocardial infarction. An association between Coronary Heart Disease (CHD) and Sudden Cardiac Death (SCD) has been long recognised. For the first time, we are reporting a correlation between applied external pressure, such as Cardiopulmonary Resuscitation (CPR), coughing, sneezing, blowing one’s nose, etc., and diseased coronary artery plaque via 3 D coronary artery models and two-way Fluid-Solid Interaction (FSI) models. Shear and von Mises stresses inside arteries and plaques have been shown to play a major role in plaque development, progression of disease, and the likelihood of plaque rupture. Our results show a drastic change in maximum shear (300%) and von Mises stresses (500%) with increasing external pressure. This change may indicate an onset of imminent plaque rupture. Furthermore, FSI modelling indicates a strong correlation between plaque thickness, location, and external pressure. With further clinical and simulation studies, this information could be helpful in understanding potential limit pressure in the CPR process for patients with CHD.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.