{"title":"中国西天山333年平均最低气温重建记录","authors":"L. Jiao, Sheng-jie Wang, Yuan Jiang, Xuerui Liu","doi":"10.1515/geochr-2015-0104","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a fragile ecological area in the Western Tianshan National Nature Reserve of China was selected as the research region, and Picea schrenkiana, which is sensitive to climate change, was selected as the research object. The mean minimum temperature in the growing season of the previous year (May to September) was the main limiting factor for tree radial growth based on an analysis of the relationship between chronological series and climatic factors during 1959–2012 (r = –0.792, p < 0.05). Moreover, the relationship was stable, which showed that tree rings can be used as alternative materials for climate reconstruction. Therefore, the mean minimum temperature of the previous year in 1680–2012 was reconstructed, and the explained variance of the reconstruction equation was 62.7% (R2adj = 62.0%, F = 85.8). The 31 dramatically altered years were found via characteristic year analyses, and extreme changes occurred most often under relatively warm conditions. The mean minimum temperature in the reconstruction shows a clear warming trend by the 11-year moving average of the reconstructive series since the 1950s (the temperature increase: 0.341°C/decade). The driving factors of the mean minimum temperature were influenced mainly by the interaction of solar activity and large-scale atmospheric–oceanic variability, especially the westerly circulations.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":"46 1","pages":"37 - 48"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A 333-year record of the mean minimum temperature reconstruction in the Western Tianshan Mountains, China\",\"authors\":\"L. Jiao, Sheng-jie Wang, Yuan Jiang, Xuerui Liu\",\"doi\":\"10.1515/geochr-2015-0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a fragile ecological area in the Western Tianshan National Nature Reserve of China was selected as the research region, and Picea schrenkiana, which is sensitive to climate change, was selected as the research object. The mean minimum temperature in the growing season of the previous year (May to September) was the main limiting factor for tree radial growth based on an analysis of the relationship between chronological series and climatic factors during 1959–2012 (r = –0.792, p < 0.05). Moreover, the relationship was stable, which showed that tree rings can be used as alternative materials for climate reconstruction. Therefore, the mean minimum temperature of the previous year in 1680–2012 was reconstructed, and the explained variance of the reconstruction equation was 62.7% (R2adj = 62.0%, F = 85.8). The 31 dramatically altered years were found via characteristic year analyses, and extreme changes occurred most often under relatively warm conditions. The mean minimum temperature in the reconstruction shows a clear warming trend by the 11-year moving average of the reconstructive series since the 1950s (the temperature increase: 0.341°C/decade). The driving factors of the mean minimum temperature were influenced mainly by the interaction of solar activity and large-scale atmospheric–oceanic variability, especially the westerly circulations.\",\"PeriodicalId\":50421,\"journal\":{\"name\":\"Geochronometria\",\"volume\":\"46 1\",\"pages\":\"37 - 48\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochronometria\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geochr-2015-0104\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geochr-2015-0104","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
A 333-year record of the mean minimum temperature reconstruction in the Western Tianshan Mountains, China
Abstract In this paper, a fragile ecological area in the Western Tianshan National Nature Reserve of China was selected as the research region, and Picea schrenkiana, which is sensitive to climate change, was selected as the research object. The mean minimum temperature in the growing season of the previous year (May to September) was the main limiting factor for tree radial growth based on an analysis of the relationship between chronological series and climatic factors during 1959–2012 (r = –0.792, p < 0.05). Moreover, the relationship was stable, which showed that tree rings can be used as alternative materials for climate reconstruction. Therefore, the mean minimum temperature of the previous year in 1680–2012 was reconstructed, and the explained variance of the reconstruction equation was 62.7% (R2adj = 62.0%, F = 85.8). The 31 dramatically altered years were found via characteristic year analyses, and extreme changes occurred most often under relatively warm conditions. The mean minimum temperature in the reconstruction shows a clear warming trend by the 11-year moving average of the reconstructive series since the 1950s (the temperature increase: 0.341°C/decade). The driving factors of the mean minimum temperature were influenced mainly by the interaction of solar activity and large-scale atmospheric–oceanic variability, especially the westerly circulations.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.