非理想现场条件下EMC天线校准的标准场址法子案例实施可能性

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-07-31 DOI:10.26866/jees.2023.4.r.180
İlkcan Coşkun, S. Ikizoglu
{"title":"非理想现场条件下EMC天线校准的标准场址法子案例实施可能性","authors":"İlkcan Coşkun, S. Ikizoglu","doi":"10.26866/jees.2023.4.r.180","DOIUrl":null,"url":null,"abstract":"Today, a number of engineering issues require electromagnetic compatibility (EMC) tests, in turn triggering the need for EMC-antenna calibrations. In this framework, experimenters seek accurate and time-saving solutions. Basically, standard site method (SSM) ANSI C63.5-2006 stipulates the near-to-ideal conditions on an empty and vast land, where three antennas are used for antenna factor determination. In our previous work, we investigated the suitability of narrow test sites for antenna calibration according to three-antenna SSM-ANSIC-63.5-2006, whose usability was validated under certain conditions. In the present study, we expand our research by applying the sub-cases of using a known antenna and identical antennas specified in the standard in order to shorten the calibration process. The results reveal that the methods for various calibrations are useful for successfully running the process even in non-ideal sites and help significantly reduce the experimentation time, considering the uncertainty limits specified in EMC test standards.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation Possibilities of Standard Site Method Sub-cases for EMC Antenna Calibrations in Non-ideal Site Conditions\",\"authors\":\"İlkcan Coşkun, S. Ikizoglu\",\"doi\":\"10.26866/jees.2023.4.r.180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, a number of engineering issues require electromagnetic compatibility (EMC) tests, in turn triggering the need for EMC-antenna calibrations. In this framework, experimenters seek accurate and time-saving solutions. Basically, standard site method (SSM) ANSI C63.5-2006 stipulates the near-to-ideal conditions on an empty and vast land, where three antennas are used for antenna factor determination. In our previous work, we investigated the suitability of narrow test sites for antenna calibration according to three-antenna SSM-ANSIC-63.5-2006, whose usability was validated under certain conditions. In the present study, we expand our research by applying the sub-cases of using a known antenna and identical antennas specified in the standard in order to shorten the calibration process. The results reveal that the methods for various calibrations are useful for successfully running the process even in non-ideal sites and help significantly reduce the experimentation time, considering the uncertainty limits specified in EMC test standards.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.4.r.180\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.4.r.180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如今,许多工程问题都需要进行电磁兼容性(EMC)测试,从而引发对EMC天线校准的需求。在这个框架中,实验者寻求准确和节省时间的解决方案。基本上,标准站点法(SSM) ANSI C63.5-2006规定了在空旷广阔的土地上接近理想的条件,其中使用三个天线进行天线因子的确定。在之前的工作中,我们根据三天线SSM-ANSIC-63.5-2006研究了窄测试点天线校准的适用性,并在一定条件下验证了其可用性。在本研究中,我们扩展了我们的研究,应用了使用已知天线和标准中规定的相同天线的子案例,以缩短校准过程。结果表明,考虑到EMC测试标准中规定的不确定度限制,各种校准方法即使在非理想场所也能有效地成功运行该过程,并有助于显着缩短实验时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation Possibilities of Standard Site Method Sub-cases for EMC Antenna Calibrations in Non-ideal Site Conditions
Today, a number of engineering issues require electromagnetic compatibility (EMC) tests, in turn triggering the need for EMC-antenna calibrations. In this framework, experimenters seek accurate and time-saving solutions. Basically, standard site method (SSM) ANSI C63.5-2006 stipulates the near-to-ideal conditions on an empty and vast land, where three antennas are used for antenna factor determination. In our previous work, we investigated the suitability of narrow test sites for antenna calibration according to three-antenna SSM-ANSIC-63.5-2006, whose usability was validated under certain conditions. In the present study, we expand our research by applying the sub-cases of using a known antenna and identical antennas specified in the standard in order to shorten the calibration process. The results reveal that the methods for various calibrations are useful for successfully running the process even in non-ideal sites and help significantly reduce the experimentation time, considering the uncertainty limits specified in EMC test standards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1