语音同声翻译的跨模态决策正则化

Mohd Abbas Zaidi, Beomseok Lee, Sangha Kim, Chanwoo Kim
{"title":"语音同声翻译的跨模态决策正则化","authors":"Mohd Abbas Zaidi, Beomseok Lee, Sangha Kim, Chanwoo Kim","doi":"10.21437/interspeech.2022-10617","DOIUrl":null,"url":null,"abstract":"Simultaneous translation systems start producing the output while processing the partial source sentence in the incoming input stream. These systems need to decide when to read more input and when to write the output. The decisions taken by the model depend on the structure of source/target language and the information contained in the partial input sequence. Hence, read/write decision policy remains the same across different input modalities, i.e., speech and text. This motivates us to leverage the text transcripts corresponding to the speech input for improving simultaneous speech-to-text translation (SimulST). We propose Cross-Modal Decision Regularization (CMDR) to improve the decision policy of SimulST systems by using the simultaneous text-to-text translation (SimulMT) task. We also extend several techniques from the offline speech translation domain to explore the role of SimulMT task in improving SimulST performance. Overall, we achieve 34.66% / 4.5 BLEU improvement over the baseline model across different latency regimes for the MuST-C English-German (EnDe) SimulST task.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"116-120"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cross-Modal Decision Regularization for Simultaneous Speech Translation\",\"authors\":\"Mohd Abbas Zaidi, Beomseok Lee, Sangha Kim, Chanwoo Kim\",\"doi\":\"10.21437/interspeech.2022-10617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simultaneous translation systems start producing the output while processing the partial source sentence in the incoming input stream. These systems need to decide when to read more input and when to write the output. The decisions taken by the model depend on the structure of source/target language and the information contained in the partial input sequence. Hence, read/write decision policy remains the same across different input modalities, i.e., speech and text. This motivates us to leverage the text transcripts corresponding to the speech input for improving simultaneous speech-to-text translation (SimulST). We propose Cross-Modal Decision Regularization (CMDR) to improve the decision policy of SimulST systems by using the simultaneous text-to-text translation (SimulMT) task. We also extend several techniques from the offline speech translation domain to explore the role of SimulMT task in improving SimulST performance. Overall, we achieve 34.66% / 4.5 BLEU improvement over the baseline model across different latency regimes for the MuST-C English-German (EnDe) SimulST task.\",\"PeriodicalId\":73500,\"journal\":{\"name\":\"Interspeech\",\"volume\":\"1 1\",\"pages\":\"116-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interspeech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/interspeech.2022-10617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

同声传译系统在处理输入流中的部分源语句的同时开始产生输出。这些系统需要决定何时读取更多的输入以及何时写入输出。模型所做的决定取决于源/目标语言的结构和部分输入序列中包含的信息。因此,读/写决策策略在不同的输入模式(即语音和文本)之间保持不变。这促使我们利用与语音输入相对应的文本转录本来改进语音到文本的同时翻译(SimulST)。我们提出了跨模态决策正则化(CMDR),通过使用同时文本到文本翻译(SimulMT)任务来改进SimulST系统的决策策略。我们还扩展了离线语音翻译领域的几种技术,以探索SimulMT任务在提高SimulST性能方面的作用。总体而言,在MuST-C英-德(EnDe)SimulST任务的不同延迟机制下,我们比基线模型实现了34.66%/4.5 BLEU的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Modal Decision Regularization for Simultaneous Speech Translation
Simultaneous translation systems start producing the output while processing the partial source sentence in the incoming input stream. These systems need to decide when to read more input and when to write the output. The decisions taken by the model depend on the structure of source/target language and the information contained in the partial input sequence. Hence, read/write decision policy remains the same across different input modalities, i.e., speech and text. This motivates us to leverage the text transcripts corresponding to the speech input for improving simultaneous speech-to-text translation (SimulST). We propose Cross-Modal Decision Regularization (CMDR) to improve the decision policy of SimulST systems by using the simultaneous text-to-text translation (SimulMT) task. We also extend several techniques from the offline speech translation domain to explore the role of SimulMT task in improving SimulST performance. Overall, we achieve 34.66% / 4.5 BLEU improvement over the baseline model across different latency regimes for the MuST-C English-German (EnDe) SimulST task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1