Ali Reza Sattarzadeh , Ronny J. Kutadinata , Pubudu N. Pathirana , Van Thanh Huynh
{"title":"基于ARIMA卷积- lstm网络和洗刷注意层的混合深度学习模型","authors":"Ali Reza Sattarzadeh , Ronny J. Kutadinata , Pubudu N. Pathirana , Van Thanh Huynh","doi":"10.1080/23249935.2023.2236724","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic flow prediction requires learning of nonlinear spatio-temporal dynamics which becomes challenging due to its inherent nonlinearity and stochasticity. Addressing this shortfall, we propose a new hybrid deep learning model based on an attention mechanism that uses multi-layered hybrid architectures to extract spatial–temporal, nonlinear characteristics. Firstly, by designing the autoregressive integral moving average (ARIMA) model, trends and linear regression are extracted; then, integration of convolutional neural network (CNN) and long short-term memory (LSTM) networks leads to better understanding of the model's correlations, serving for more accurate traffic prediction. Secondly, we develop a shuffle attention-based (SA) Conv-LSTM module to determine significance of flow sequences by allocating various weights. Thirdly, to effectively analyse short-term temporal dependencies, we utilise bidirectional LSTM (Bi-LSTM) components to capture periodic features. Experimental results illustrate that our Shuffle Attention ARIMA Conv-LSTM (SAACL) model provides better prediction than other comparable methods, particularly for short-term forecasting, using PeMS datasets.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 388-410"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction\",\"authors\":\"Ali Reza Sattarzadeh , Ronny J. Kutadinata , Pubudu N. Pathirana , Van Thanh Huynh\",\"doi\":\"10.1080/23249935.2023.2236724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic flow prediction requires learning of nonlinear spatio-temporal dynamics which becomes challenging due to its inherent nonlinearity and stochasticity. Addressing this shortfall, we propose a new hybrid deep learning model based on an attention mechanism that uses multi-layered hybrid architectures to extract spatial–temporal, nonlinear characteristics. Firstly, by designing the autoregressive integral moving average (ARIMA) model, trends and linear regression are extracted; then, integration of convolutional neural network (CNN) and long short-term memory (LSTM) networks leads to better understanding of the model's correlations, serving for more accurate traffic prediction. Secondly, we develop a shuffle attention-based (SA) Conv-LSTM module to determine significance of flow sequences by allocating various weights. Thirdly, to effectively analyse short-term temporal dependencies, we utilise bidirectional LSTM (Bi-LSTM) components to capture periodic features. Experimental results illustrate that our Shuffle Attention ARIMA Conv-LSTM (SAACL) model provides better prediction than other comparable methods, particularly for short-term forecasting, using PeMS datasets.</div></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"21 1\",\"pages\":\"Pages 388-410\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S232499352300194X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S232499352300194X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A novel hybrid deep learning model with ARIMA Conv-LSTM networks and shuffle attention layer for short-term traffic flow prediction
Traffic flow prediction requires learning of nonlinear spatio-temporal dynamics which becomes challenging due to its inherent nonlinearity and stochasticity. Addressing this shortfall, we propose a new hybrid deep learning model based on an attention mechanism that uses multi-layered hybrid architectures to extract spatial–temporal, nonlinear characteristics. Firstly, by designing the autoregressive integral moving average (ARIMA) model, trends and linear regression are extracted; then, integration of convolutional neural network (CNN) and long short-term memory (LSTM) networks leads to better understanding of the model's correlations, serving for more accurate traffic prediction. Secondly, we develop a shuffle attention-based (SA) Conv-LSTM module to determine significance of flow sequences by allocating various weights. Thirdly, to effectively analyse short-term temporal dependencies, we utilise bidirectional LSTM (Bi-LSTM) components to capture periodic features. Experimental results illustrate that our Shuffle Attention ARIMA Conv-LSTM (SAACL) model provides better prediction than other comparable methods, particularly for short-term forecasting, using PeMS datasets.
期刊介绍:
Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.