用于多种核酸定量检测的多参数表面等离子体共振仪

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Biomedical Microdevices Pub Date : 2023-07-07 DOI:10.1007/s10544-023-00664-0
Huixiang Wang, Honggang Wang, Yafeng Huang, Hao Zhang, Yongdong Fu, Zhenwei Yang, Yuanyuan Chen, Xianbo Qiu, Duli Yu, Lulu Zhang
{"title":"用于多种核酸定量检测的多参数表面等离子体共振仪","authors":"Huixiang Wang,&nbsp;Honggang Wang,&nbsp;Yafeng Huang,&nbsp;Hao Zhang,&nbsp;Yongdong Fu,&nbsp;Zhenwei Yang,&nbsp;Yuanyuan Chen,&nbsp;Xianbo Qiu,&nbsp;Duli Yu,&nbsp;Lulu Zhang","doi":"10.1007/s10544-023-00664-0","DOIUrl":null,"url":null,"abstract":"<div><p>Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-parameter surface plasmon resonance instrument for multiple nucleic acid quantitative detection\",\"authors\":\"Huixiang Wang,&nbsp;Honggang Wang,&nbsp;Yafeng Huang,&nbsp;Hao Zhang,&nbsp;Yongdong Fu,&nbsp;Zhenwei Yang,&nbsp;Yuanyuan Chen,&nbsp;Xianbo Qiu,&nbsp;Duli Yu,&nbsp;Lulu Zhang\",\"doi\":\"10.1007/s10544-023-00664-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.</p><h3>Graphical abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-023-00664-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00664-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

多重核酸检测可以同时检测复杂混合物中不同靶标核酸的特征,在疾病诊断、环境监测和食品安全等方面具有广泛的应用。然而,传统的核酸扩增检测方法存在操作复杂、检测时间长、荧光标记不稳定、多重核酸相互干扰等局限性。我们研制了一种实时、快速、无标记的表面等离子体共振(SPR)多重核酸检测仪器。基于全反射的多参数光学系统通过与线性光源、棱镜、光电探测器和机械传输系统的配合,解决了多路检测问题。针对不同检测通道响应性不一致和无法定量比较的问题,提出了一种自适应阈值一致性校正算法。该仪器实现了对乳腺癌和前列腺癌中广泛表达的miRNA-21和miRNA-141这些生物标志物的无标记和无扩增快速检测。多重核酸检测耗时30 min,具有良好的重复性和特异性。仪器对目标寡核苷酸的检出限(lod)为50 nM,可检出的最小样品绝对量约为4 pmol。它为DNA和miRNA等小分子提供了一个简单高效的POCT检测平台。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-parameter surface plasmon resonance instrument for multiple nucleic acid quantitative detection

Multiplex nucleic acid assays can simultaneously detect the characteristics of different target nucleic acids in complex mixtures and are used in disease diagnosis, environmental monitoring, and food safety. However, traditional nucleic acid amplification assays have limitations such as complicated operation, long detection time, unstable fluorescent labeling, and mutual interference of multiplex nucleic acids. We developed a real-time, rapid, and label-free surface plasmon resonance (SPR) instrument for multiplex nucleic acid detection. The multiparametric optical system based on total internal reflection solves the multiplex detection problem by cooperating with linear light source, prism, photodetector, and mechanical transmission system. An adaptive threshold consistency correction algorithm is proposed to solve the problem of inconsistent responsiveness of different detection channels and the inability of quantitative comparison. The instrument achieves label-free and amplification-free rapid detection of these biomarkers for miRNA-21 and miRNA-141, which are widely expressed in breast cancer and prostate cancer. The multiplex nucleic acid detection takes 30 min and the biosensor has good repeatability and specificity. The instrument has a limit of detection (LODs) of 50 nM for target oligonucleotides, and the smallest absolute amount of sample that can be detected is about 4 pmol. It provides a simple and efficient point-of-care testing (POCT) detection platform for small molecules such as DNA and miRNA.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
期刊最新文献
Smartphone-driven centrifugal microfluidics for diagnostics in resource limited settings Enhancing biomedical imaging: the role of nanoparticle-based contrast agents Panoramic review on polymeric microneedle arrays for clinical applications Construction of a pumpless gravity-driven vascularized Skin-on-a-Chip for the study of hepatocytotoxicity in percutaneous exposure to exogenous chemicals Functionalization of microbubbles in a microfluidic chip for biosensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1