基于渐进第一失效截尾样本的Burr反分布的不同估计方法和联合收敛域及其在纳米液滴数据中的应用

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-10-14 DOI:10.1285/I20705948V12N2P341
H. Panahi
{"title":"基于渐进第一失效截尾样本的Burr反分布的不同估计方法和联合收敛域及其在纳米液滴数据中的应用","authors":"H. Panahi","doi":"10.1285/I20705948V12N2P341","DOIUrl":null,"url":null,"abstract":"In this article, the point and interval estimation of parameters for an in-verse Burr distribution based on progressively rst-failure censored sampleis studied. In point estimation, the maximum likelihood and Bayesian meth-ods are developed for estimating the unknown parameters. An expectation-maximization algorithm is applied for computing the maximum likelihoodestimators. The Bayes estimates relative to both the symmetric and asym-metric loss functions are provided using the Lindley's approximation andthe Metropolis-Hastings algorithm. In interval estimation, approximate andexact condence intervals with the exact condence region for the two parameters have been introduced. Moreover, the proposed methods are carriedout to a real data set contains the spreading of nanodroplet impingementonto a solid surface in order to demonstrate the applicabilities.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"341-361"},"PeriodicalIF":0.6000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N2P341","citationCount":"0","resultStr":"{\"title\":\"Different Estimation Methods and Joint Condence Region for the Inverse Burr Distribution Based on Progressively First-Failure Censored Sample with Application to the Nanodroplet Data\",\"authors\":\"H. Panahi\",\"doi\":\"10.1285/I20705948V12N2P341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the point and interval estimation of parameters for an in-verse Burr distribution based on progressively rst-failure censored sampleis studied. In point estimation, the maximum likelihood and Bayesian meth-ods are developed for estimating the unknown parameters. An expectation-maximization algorithm is applied for computing the maximum likelihoodestimators. The Bayes estimates relative to both the symmetric and asym-metric loss functions are provided using the Lindley's approximation andthe Metropolis-Hastings algorithm. In interval estimation, approximate andexact condence intervals with the exact condence region for the two parameters have been introduced. Moreover, the proposed methods are carriedout to a real data set contains the spreading of nanodroplet impingementonto a solid surface in order to demonstrate the applicabilities.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"12 1\",\"pages\":\"341-361\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1285/I20705948V12N2P341\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V12N2P341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N2P341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于渐进式失效截尾样本的反向毛刺分布参数的点估计和区间估计。在点估计中,提出了极大似然法和贝叶斯法来估计未知参数。应用期望最大化算法计算最大似然估计量。使用Lindley近似和Metropolis-Hastings算法提供了相对于对称和非对称损失函数的Bayes估计。在区间估计中,引入了两个参数具有精确置信区域的近似置信区间和精确置信区间。最后,将所提方法应用于包含纳米液滴撞击扩散到固体表面的真实数据集,以验证所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different Estimation Methods and Joint Condence Region for the Inverse Burr Distribution Based on Progressively First-Failure Censored Sample with Application to the Nanodroplet Data
In this article, the point and interval estimation of parameters for an in-verse Burr distribution based on progressively rst-failure censored sampleis studied. In point estimation, the maximum likelihood and Bayesian meth-ods are developed for estimating the unknown parameters. An expectation-maximization algorithm is applied for computing the maximum likelihoodestimators. The Bayes estimates relative to both the symmetric and asym-metric loss functions are provided using the Lindley's approximation andthe Metropolis-Hastings algorithm. In interval estimation, approximate andexact condence intervals with the exact condence region for the two parameters have been introduced. Moreover, the proposed methods are carriedout to a real data set contains the spreading of nanodroplet impingementonto a solid surface in order to demonstrate the applicabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1