ZnO基压敏陶瓷的合成与表征:烧结温度的影响

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics International Pub Date : 2022-05-17 DOI:10.1108/mi-01-2022-0005
A. Bouchekhlal, M. Boulesbaa
{"title":"ZnO基压敏陶瓷的合成与表征:烧结温度的影响","authors":"A. Bouchekhlal, M. Boulesbaa","doi":"10.1108/mi-01-2022-0005","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to investigate the effects of the sintering temperature on the microstructural, morphological and electrical characteristics of Zinc oxide (ZnO)-based varistors.\n\n\nDesign/methodology/approach\nThis study used a conventional method to design and produce ZnO varistors by sintering ZnO powder with small amounts of various metal oxides. Furthermore, the effect of sintering temperature on varistor properties of (Bi, Co, Cr, Sb, Mn)-doped ZnO ceramics was investigated in the range of 1280–1350 °C.\n\n\nFindings\nThe obtained results showed an EB value of 2109.79 V/cm, a Vgb value of 0.831 V and a nonlinear coefficient (α) value of 19.91 for sample sintered at temperature of 1300 °C. In addition, the low value of tan δ at low frequency range confirmed that the grain boundaries created in 1300 °C sintering temperature were obviously good.\n\n\nOriginality/value\nBased on the previous research on the ZnO-based varistors, a thorough study was carried out on these components to improve their electrical characteristics. Thus, it is necessary that those varistors have low leakage current and low value of dissipation factor to ensure their good quality. High breakdown fields and nonlinearity coefficients are also required in such kind of components. The effect of sintering temperature on the varistor properties of the new compositions (zinc, bismuth, manganese, chrome, cobalt, antimony and silicon oxides)-doped ZnO ceramics was studied in the range of 1280–1350 °C. Also, the microstructure and the phase evolution of the samples sintered at various temperatures (1280 °C, 1300 °C, 1320 °C and 1350 °C) were investigated according to X-ray diffraction and scanning electron microscope measurements.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of ZnO based varistor ceramics: effect of sintering temperatures\",\"authors\":\"A. Bouchekhlal, M. Boulesbaa\",\"doi\":\"10.1108/mi-01-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to investigate the effects of the sintering temperature on the microstructural, morphological and electrical characteristics of Zinc oxide (ZnO)-based varistors.\\n\\n\\nDesign/methodology/approach\\nThis study used a conventional method to design and produce ZnO varistors by sintering ZnO powder with small amounts of various metal oxides. Furthermore, the effect of sintering temperature on varistor properties of (Bi, Co, Cr, Sb, Mn)-doped ZnO ceramics was investigated in the range of 1280–1350 °C.\\n\\n\\nFindings\\nThe obtained results showed an EB value of 2109.79 V/cm, a Vgb value of 0.831 V and a nonlinear coefficient (α) value of 19.91 for sample sintered at temperature of 1300 °C. In addition, the low value of tan δ at low frequency range confirmed that the grain boundaries created in 1300 °C sintering temperature were obviously good.\\n\\n\\nOriginality/value\\nBased on the previous research on the ZnO-based varistors, a thorough study was carried out on these components to improve their electrical characteristics. Thus, it is necessary that those varistors have low leakage current and low value of dissipation factor to ensure their good quality. High breakdown fields and nonlinearity coefficients are also required in such kind of components. The effect of sintering temperature on the varistor properties of the new compositions (zinc, bismuth, manganese, chrome, cobalt, antimony and silicon oxides)-doped ZnO ceramics was studied in the range of 1280–1350 °C. Also, the microstructure and the phase evolution of the samples sintered at various temperatures (1280 °C, 1300 °C, 1320 °C and 1350 °C) were investigated according to X-ray diffraction and scanning electron microscope measurements.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/mi-01-2022-0005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/mi-01-2022-0005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目的研究烧结温度对氧化锌压敏电阻的微观结构、形貌和电学性能的影响。设计/方法/方法本研究采用传统方法,通过将ZnO粉末与少量各种金属氧化物烧结来设计和生产ZnO压敏电阻器。此外,在1280–1350范围内,研究了烧结温度对(Bi,Co,Cr,Sb,Mn)掺杂ZnO陶瓷压敏电阻性能的影响 °C。结果所获得的结果显示EB值为2109.79 V/cm,Vgb值为0.831 对于在1300温度下烧结的样品,V和19.91的非线性系数(α)值 °C。此外,低频范围内的低tanδ值证实了1300年形成的晶界 °C烧结温度明显良好。独创性/价值在以往对ZnO基压敏电阻的研究基础上,对这些元件进行了深入的研究,以改善其电气特性。因此,这些变阻器必须具有低漏电流和低损耗因子值,以确保其良好的质量。在这类部件中也需要高击穿场和非线性系数。在1280–1350范围内,研究了烧结温度对新组分(锌、铋、锰、铬、钴、锑和氧化硅)掺杂ZnO陶瓷压敏电阻性能的影响 °C。此外,在不同温度下烧结的样品的微观结构和相演变(1280 °C,1300 °C,1320 °C和1350 °C)进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of ZnO based varistor ceramics: effect of sintering temperatures
Purpose The purpose of this paper is to investigate the effects of the sintering temperature on the microstructural, morphological and electrical characteristics of Zinc oxide (ZnO)-based varistors. Design/methodology/approach This study used a conventional method to design and produce ZnO varistors by sintering ZnO powder with small amounts of various metal oxides. Furthermore, the effect of sintering temperature on varistor properties of (Bi, Co, Cr, Sb, Mn)-doped ZnO ceramics was investigated in the range of 1280–1350 °C. Findings The obtained results showed an EB value of 2109.79 V/cm, a Vgb value of 0.831 V and a nonlinear coefficient (α) value of 19.91 for sample sintered at temperature of 1300 °C. In addition, the low value of tan δ at low frequency range confirmed that the grain boundaries created in 1300 °C sintering temperature were obviously good. Originality/value Based on the previous research on the ZnO-based varistors, a thorough study was carried out on these components to improve their electrical characteristics. Thus, it is necessary that those varistors have low leakage current and low value of dissipation factor to ensure their good quality. High breakdown fields and nonlinearity coefficients are also required in such kind of components. The effect of sintering temperature on the varistor properties of the new compositions (zinc, bismuth, manganese, chrome, cobalt, antimony and silicon oxides)-doped ZnO ceramics was studied in the range of 1280–1350 °C. Also, the microstructure and the phase evolution of the samples sintered at various temperatures (1280 °C, 1300 °C, 1320 °C and 1350 °C) were investigated according to X-ray diffraction and scanning electron microscope measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics International
Microelectronics International 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
28
审稿时长
>12 weeks
期刊介绍: Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details. Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are: • Advanced packaging • Ceramics • Chip attachment • Chip on board (COB) • Chip scale packaging • Flexible substrates • MEMS • Micro-circuit technology • Microelectronic materials • Multichip modules (MCMs) • Organic/polymer electronics • Printed electronics • Semiconductor technology • Solid state sensors • Thermal management • Thick/thin film technology • Wafer scale processing.
期刊最新文献
Study of the electronic transport performance of ZnO-SiO2 film: the construction of grain boundary barrier 3-pass and 5-pass laser grooving & die strength characterization for reinforced internal low-k 55nm node wafer structure via heat-treatment process Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents Quasi-elliptic band pass filter using resonators based on coupling theory for ultra-wide band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1