斯坦因的方法与计算统计:一些最新发展的回顾

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2021-05-07 DOI:10.1214/22-sts863
Andreas Anastasiou, A. Barp, F. Briol, B. Ebner, Robert E. Gaunt, Fatemeh Ghaderinezhad, Jackson Gorham, A. Gretton, Christophe Ley, Qiang Liu, Lester W. Mackey, C. Oates, G. Reinert, Yvik Swan
{"title":"斯坦因的方法与计算统计:一些最新发展的回顾","authors":"Andreas Anastasiou, A. Barp, F. Briol, B. Ebner, Robert E. Gaunt, Fatemeh Ghaderinezhad, Jackson Gorham, A. Gretton, Christophe Ley, Qiang Liu, Lester W. Mackey, C. Oates, G. Reinert, Yvik Swan","doi":"10.1214/22-sts863","DOIUrl":null,"url":null,"abstract":"Stein's method compares probability distributions through the study of a class of linear operators called Stein operators. While mainly studied in probability and used to underpin theoretical statistics, Stein's method has led to significant advances in computational statistics in recent years. The goal of this survey is to bring together some of these recent developments and, in doing so, to stimulate further research into the successful field of Stein's method and statistics. The topics we discuss include tools to benchmark and compare sampling methods such as approximate Markov chain Monte Carlo, deterministic alternatives to sampling methods, control variate techniques, parameter estimation and goodness-of-fit testing.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments\",\"authors\":\"Andreas Anastasiou, A. Barp, F. Briol, B. Ebner, Robert E. Gaunt, Fatemeh Ghaderinezhad, Jackson Gorham, A. Gretton, Christophe Ley, Qiang Liu, Lester W. Mackey, C. Oates, G. Reinert, Yvik Swan\",\"doi\":\"10.1214/22-sts863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stein's method compares probability distributions through the study of a class of linear operators called Stein operators. While mainly studied in probability and used to underpin theoretical statistics, Stein's method has led to significant advances in computational statistics in recent years. The goal of this survey is to bring together some of these recent developments and, in doing so, to stimulate further research into the successful field of Stein's method and statistics. The topics we discuss include tools to benchmark and compare sampling methods such as approximate Markov chain Monte Carlo, deterministic alternatives to sampling methods, control variate techniques, parameter estimation and goodness-of-fit testing.\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-sts863\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-sts863","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 17

摘要

斯坦的方法通过研究一类叫做斯坦算子的线性算子来比较概率分布。虽然主要研究概率论并用于理论统计,但斯坦的方法近年来在计算统计方面取得了重大进展。这项调查的目的是汇集这些最新的发展,并在这样做的过程中,刺激对斯坦的方法和统计的成功领域的进一步研究。我们讨论的主题包括基准测试和比较采样方法的工具,如近似马尔可夫链蒙特卡罗,采样方法的确定性替代方案,控制变量技术,参数估计和拟合优度测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments
Stein's method compares probability distributions through the study of a class of linear operators called Stein operators. While mainly studied in probability and used to underpin theoretical statistics, Stein's method has led to significant advances in computational statistics in recent years. The goal of this survey is to bring together some of these recent developments and, in doing so, to stimulate further research into the successful field of Stein's method and statistics. The topics we discuss include tools to benchmark and compare sampling methods such as approximate Markov chain Monte Carlo, deterministic alternatives to sampling methods, control variate techniques, parameter estimation and goodness-of-fit testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
Variable Selection Using Bayesian Additive Regression Trees. Defining Replicability of Prediction Rules Tracking Truth Through Measurement and the Spyglass of Statistics Replicability Across Multiple Studies Game-Theoretic Statistics and Safe Anytime-Valid Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1