{"title":"NiCo2O4@V2O5纳米带作为高效电化学电荷存储的电极材料","authors":"D. K. Mohapatra, M. Sahoo, S. Praharaj, D. Rout","doi":"10.1088/2399-1984/ac9d12","DOIUrl":null,"url":null,"abstract":"The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.","PeriodicalId":54222,"journal":{"name":"Nano Futures","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiCo2O4@V2O5 nanobelts as electrode materials for efficient electrochemical charge storage\",\"authors\":\"D. K. Mohapatra, M. Sahoo, S. Praharaj, D. Rout\",\"doi\":\"10.1088/2399-1984/ac9d12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.\",\"PeriodicalId\":54222,\"journal\":{\"name\":\"Nano Futures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Futures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2399-1984/ac9d12\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Futures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2399-1984/ac9d12","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
NiCo2O4@V2O5 nanobelts as electrode materials for efficient electrochemical charge storage
The development of novel nanostructured composites is of current interest for applications as electrode materials. In this regard, an attempt has been made to synthesize NiCo2O4@V2O5 nanocomposite and compare its charge storage performance with pristine NiCo2O4 nanoparticles. High-resolution scanning electron microscope micrographs reveal a mesoporous nanobelt like morphology of the nanocomposite with a Brunauer–Emmett–Teller surface area of ∼65 m2 g−1 and average mesopore size centered on ∼7.55 nm. Electrochemical measurements performed on both samples anticipate capacitive behavior with quasi-reversible redox reactions. However, NiCo2O4@V2O5 is found to demonstrate a strikingly high specific capacity of 194 mAh g−1 at 1 A g−1 along with a notable capacity retention of ∼90%, even after 3000 charge–discharge cycles, and a Coulombic efficiency >97% at 5 A g−1. These features are much superior to the properties of pristine NiCo2O4 nanoparticles. The results obtained in this work ascertain the functional robustness of NiCo2O4@V2O5 nanocomposites as electrode materials in supercapacitors.
期刊介绍:
Nano Futures mission is to reflect the diverse and multidisciplinary field of nanoscience and nanotechnology that now brings together researchers from across physics, chemistry, biomedicine, materials science, engineering and industry.