生物动力制剂的微生物组成及其对苹果根际微生物组的影响

IF 2.1 Q3 SOIL SCIENCE Frontiers in soil science Pub Date : 2022-11-16 DOI:10.3389/fsoil.2022.1020869
Expedito Olimi, Samuel Bickel, W. Wicaksono, P. Kusstatscher, Robert Matzer, T. Cernava, G. Berg
{"title":"生物动力制剂的微生物组成及其对苹果根际微生物组的影响","authors":"Expedito Olimi, Samuel Bickel, W. Wicaksono, P. Kusstatscher, Robert Matzer, T. Cernava, G. Berg","doi":"10.3389/fsoil.2022.1020869","DOIUrl":null,"url":null,"abstract":"Soil microbial communities are crucial for plant growth and are already depleted by anthropogenic activities. The application of microbial transplants provides a strategy to restore beneficial soil traits, but less is known about the microbiota of traditional inoculants used in biodynamic agriculture. In this study, we used amplicon sequencing and quantitative PCR to decipher microbial communities of composts, biodynamic manures, and plant preparations from Austria and France. In addition, we investigated the effect of extracts derived from biodynamic manure and compost on the rhizosphere microbiome of apple trees. Microbiota abundance, composition, and diversity of biodynamic manures, plant preparations, and composts were distinct. Microbial abundances ranged between 1010-1011 (bacterial 16S rRNA genes) and 109-1011 (fungal ITS genes). The bacterial diversity was significantly higher in biodynamic manures compared to compost without discernible differences in abundance. Fungal diversity was not significantly different while abundance was increased in biodynamic manures. The microbial communities of biodynamic manures and plant preparations were specific for each production site, but all contain potentially plant-beneficial bacterial genera. When applied in apple orchards, biodynamic preparations (extracts) had the non-significant effect of reducing bacterial and fungal abundance in apple rhizosphere (4 months post-application), while increasing fungal and lowering bacterial Shannon diversity. One to four months after inoculation, individual taxa indicated differential abundance. We observed the reduction of the pathogenic fungus Alternaria, and the enrichment of potentially beneficial bacterial genera such as Pseudomonas. Our study paves way for the science-based adaptation of empirically developed biodynamic formulations under different farming practices to restore the vitality of agricultural soils.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deciphering the microbial composition of biodynamic preparations and their effects on the apple rhizosphere microbiome\",\"authors\":\"Expedito Olimi, Samuel Bickel, W. Wicaksono, P. Kusstatscher, Robert Matzer, T. Cernava, G. Berg\",\"doi\":\"10.3389/fsoil.2022.1020869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil microbial communities are crucial for plant growth and are already depleted by anthropogenic activities. The application of microbial transplants provides a strategy to restore beneficial soil traits, but less is known about the microbiota of traditional inoculants used in biodynamic agriculture. In this study, we used amplicon sequencing and quantitative PCR to decipher microbial communities of composts, biodynamic manures, and plant preparations from Austria and France. In addition, we investigated the effect of extracts derived from biodynamic manure and compost on the rhizosphere microbiome of apple trees. Microbiota abundance, composition, and diversity of biodynamic manures, plant preparations, and composts were distinct. Microbial abundances ranged between 1010-1011 (bacterial 16S rRNA genes) and 109-1011 (fungal ITS genes). The bacterial diversity was significantly higher in biodynamic manures compared to compost without discernible differences in abundance. Fungal diversity was not significantly different while abundance was increased in biodynamic manures. The microbial communities of biodynamic manures and plant preparations were specific for each production site, but all contain potentially plant-beneficial bacterial genera. When applied in apple orchards, biodynamic preparations (extracts) had the non-significant effect of reducing bacterial and fungal abundance in apple rhizosphere (4 months post-application), while increasing fungal and lowering bacterial Shannon diversity. One to four months after inoculation, individual taxa indicated differential abundance. We observed the reduction of the pathogenic fungus Alternaria, and the enrichment of potentially beneficial bacterial genera such as Pseudomonas. Our study paves way for the science-based adaptation of empirically developed biodynamic formulations under different farming practices to restore the vitality of agricultural soils.\",\"PeriodicalId\":73107,\"journal\":{\"name\":\"Frontiers in soil science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in soil science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsoil.2022.1020869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2022.1020869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 2

摘要

土壤微生物群落对植物生长至关重要,并且已经因人类活动而枯竭。微生物移植的应用提供了一种恢复有益土壤性状的策略,但对生物动力农业中使用的传统接种剂的微生物群知之甚少。在这项研究中,我们使用扩增子测序和定量PCR来破译奥地利和法国堆肥、生物动力肥料和植物制剂的微生物群落。此外,我们还研究了生物动力肥料和堆肥提取物对苹果树根际微生物组的影响。生物动力肥料、植物制剂和堆肥的微生物群丰度、组成和多样性是不同的。微生物丰度介于1010-1011(细菌16S rRNA基因)和109-1011(真菌ITS基因)之间。与堆肥相比,生物动力肥料中的细菌多样性明显更高,丰度没有明显差异。当生物动力肥料中真菌的丰度增加时,真菌的多样性没有显著差异。生物动力肥料和植物制剂的微生物群落对每个生产地点都是特定的,但都包含潜在的植物有益细菌属。在苹果园中施用时,生物动力制剂(提取物)在降低苹果根际细菌和真菌丰度(施用后4个月),同时增加真菌和降低细菌Shannon多样性方面没有显著效果。接种后一到四个月,单个分类群显示出不同的丰度。我们观察到致病真菌链格孢的减少,以及潜在有益细菌属(如假单胞菌)的富集。我们的研究为在不同的农业实践下对经验开发的生物动力配方进行科学适应性调整铺平了道路,以恢复农业土壤的活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering the microbial composition of biodynamic preparations and their effects on the apple rhizosphere microbiome
Soil microbial communities are crucial for plant growth and are already depleted by anthropogenic activities. The application of microbial transplants provides a strategy to restore beneficial soil traits, but less is known about the microbiota of traditional inoculants used in biodynamic agriculture. In this study, we used amplicon sequencing and quantitative PCR to decipher microbial communities of composts, biodynamic manures, and plant preparations from Austria and France. In addition, we investigated the effect of extracts derived from biodynamic manure and compost on the rhizosphere microbiome of apple trees. Microbiota abundance, composition, and diversity of biodynamic manures, plant preparations, and composts were distinct. Microbial abundances ranged between 1010-1011 (bacterial 16S rRNA genes) and 109-1011 (fungal ITS genes). The bacterial diversity was significantly higher in biodynamic manures compared to compost without discernible differences in abundance. Fungal diversity was not significantly different while abundance was increased in biodynamic manures. The microbial communities of biodynamic manures and plant preparations were specific for each production site, but all contain potentially plant-beneficial bacterial genera. When applied in apple orchards, biodynamic preparations (extracts) had the non-significant effect of reducing bacterial and fungal abundance in apple rhizosphere (4 months post-application), while increasing fungal and lowering bacterial Shannon diversity. One to four months after inoculation, individual taxa indicated differential abundance. We observed the reduction of the pathogenic fungus Alternaria, and the enrichment of potentially beneficial bacterial genera such as Pseudomonas. Our study paves way for the science-based adaptation of empirically developed biodynamic formulations under different farming practices to restore the vitality of agricultural soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Sustainable soil and land management: a systems-oriented overview of scientific literature Improving a regional peat thickness map using soil apparent electrical conductivity measurements at the field-scale Extended soil surface drying triggered by subsurface drip irrigation decouples carbon and nitrogen cycles and alters microbiome composition Mitigating CO2 emissions from cultivated peatlands: Efficiency of straws and wood chips applications in maintaining carbon stock in two contrasting soils The role of soil ecosystem services in the circular bioeconomy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1