{"title":"使用柔性系绳来解耦观测浮标运动的辅助波浪动力","authors":"T. Robertson, D. Aubrey, Alicia M. Mahon","doi":"10.4031/mtsj.56.6.9","DOIUrl":null,"url":null,"abstract":"Abstract With the growth of the Blue Economy, the volume of data collection within the ocean environment has been rapidly increasing. Larger numbers of oceanographic, meteorological, and floating Light Detection And Ranging (LiDAR) buoys have been collecting high fidelity\n measurements while pushing against power budget limits. Power limitations lead to infrequent transmission of reduced data sets or recording data to local storage that must be physically collected when the buoy is serviced. Triton Systems, Inc. and its partners are developing a retrofittable\n wave energy converter (WEC) to provide auxiliary power to these observation buoys to increase mission duration and power budget, improve reliability, and reduce the need for service trips. One of the greatest challenges has been developing a method to interface Triton's WEC with these buoys\n without impacting measurement fidelity. This is especially critical for inertial wave and LiDAR wind measurements collected with sensors that could be adversely affected by additional buoy dynamics introduced by an integrated WEC. To address this, Triton and EOM Offshore developed a compliant\n tether to pair an observation buoy with a floating WEC while decoupling relative motion. Based on EOM's proven stretch hose technology, this compliant tether transmits power and data between the buoy-WEC system. Modeling shows that the system has the potential to minimally adversely affect\n oceanographic, meteorological, wind resource characterization, and other measurements, with future testing scheduled to validate modeling efforts.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of a Compliant Tether to Decouple Observation Buoy Motion for Auxiliary Wave Power\",\"authors\":\"T. Robertson, D. Aubrey, Alicia M. Mahon\",\"doi\":\"10.4031/mtsj.56.6.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the growth of the Blue Economy, the volume of data collection within the ocean environment has been rapidly increasing. Larger numbers of oceanographic, meteorological, and floating Light Detection And Ranging (LiDAR) buoys have been collecting high fidelity\\n measurements while pushing against power budget limits. Power limitations lead to infrequent transmission of reduced data sets or recording data to local storage that must be physically collected when the buoy is serviced. Triton Systems, Inc. and its partners are developing a retrofittable\\n wave energy converter (WEC) to provide auxiliary power to these observation buoys to increase mission duration and power budget, improve reliability, and reduce the need for service trips. One of the greatest challenges has been developing a method to interface Triton's WEC with these buoys\\n without impacting measurement fidelity. This is especially critical for inertial wave and LiDAR wind measurements collected with sensors that could be adversely affected by additional buoy dynamics introduced by an integrated WEC. To address this, Triton and EOM Offshore developed a compliant\\n tether to pair an observation buoy with a floating WEC while decoupling relative motion. Based on EOM's proven stretch hose technology, this compliant tether transmits power and data between the buoy-WEC system. Modeling shows that the system has the potential to minimally adversely affect\\n oceanographic, meteorological, wind resource characterization, and other measurements, with future testing scheduled to validate modeling efforts.\",\"PeriodicalId\":49878,\"journal\":{\"name\":\"Marine Technology Society Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Technology Society Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4031/mtsj.56.6.9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.56.6.9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Use of a Compliant Tether to Decouple Observation Buoy Motion for Auxiliary Wave Power
Abstract With the growth of the Blue Economy, the volume of data collection within the ocean environment has been rapidly increasing. Larger numbers of oceanographic, meteorological, and floating Light Detection And Ranging (LiDAR) buoys have been collecting high fidelity
measurements while pushing against power budget limits. Power limitations lead to infrequent transmission of reduced data sets or recording data to local storage that must be physically collected when the buoy is serviced. Triton Systems, Inc. and its partners are developing a retrofittable
wave energy converter (WEC) to provide auxiliary power to these observation buoys to increase mission duration and power budget, improve reliability, and reduce the need for service trips. One of the greatest challenges has been developing a method to interface Triton's WEC with these buoys
without impacting measurement fidelity. This is especially critical for inertial wave and LiDAR wind measurements collected with sensors that could be adversely affected by additional buoy dynamics introduced by an integrated WEC. To address this, Triton and EOM Offshore developed a compliant
tether to pair an observation buoy with a floating WEC while decoupling relative motion. Based on EOM's proven stretch hose technology, this compliant tether transmits power and data between the buoy-WEC system. Modeling shows that the system has the potential to minimally adversely affect
oceanographic, meteorological, wind resource characterization, and other measurements, with future testing scheduled to validate modeling efforts.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.