射频干扰检测的SumThreshold方法

Q4 Physics and Astronomy Chinese Astronomy and Astrophysics Pub Date : 2022-07-01 DOI:10.1016/j.chinastron.2022.09.008
Li Hui , Ding Yu-jun , Li Xiang-ru , Zhang Jin-qu
{"title":"射频干扰检测的SumThreshold方法","authors":"Li Hui ,&nbsp;Ding Yu-jun ,&nbsp;Li Xiang-ru ,&nbsp;Zhang Jin-qu","doi":"10.1016/j.chinastron.2022.09.008","DOIUrl":null,"url":null,"abstract":"<div><p>Radio frequency interference<span> (RFI) is one of the main challenges in the search of radio targets and their accurate analysis. The efficient RFI detection and mitigation techniques are required in the radio data processing. Existing RFI mitigation algorithms typically fall into three categories: component decomposition methods, threshold-based methods, and machine learning methods. The threshold-based algorithms are widely used in real applications because of its clear principle, simple structure, and easily implementation. Especially, the SumThreshold method is becoming more concerned for its good performance in RFI detection. Therefore, this work investigates the principles and algorithm of SumThreshold, and discusses its characteristics and applicability.</span></p></div>","PeriodicalId":35730,"journal":{"name":"Chinese Astronomy and Astrophysics","volume":"46 3","pages":"Pages 277-296"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The SumThreshold Method for Radio Frequency Interference Detection\",\"authors\":\"Li Hui ,&nbsp;Ding Yu-jun ,&nbsp;Li Xiang-ru ,&nbsp;Zhang Jin-qu\",\"doi\":\"10.1016/j.chinastron.2022.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radio frequency interference<span> (RFI) is one of the main challenges in the search of radio targets and their accurate analysis. The efficient RFI detection and mitigation techniques are required in the radio data processing. Existing RFI mitigation algorithms typically fall into three categories: component decomposition methods, threshold-based methods, and machine learning methods. The threshold-based algorithms are widely used in real applications because of its clear principle, simple structure, and easily implementation. Especially, the SumThreshold method is becoming more concerned for its good performance in RFI detection. Therefore, this work investigates the principles and algorithm of SumThreshold, and discusses its characteristics and applicability.</span></p></div>\",\"PeriodicalId\":35730,\"journal\":{\"name\":\"Chinese Astronomy and Astrophysics\",\"volume\":\"46 3\",\"pages\":\"Pages 277-296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0275106222000650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0275106222000650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

射频干扰(RFI)是无线电目标搜索和准确分析的主要挑战之一。在无线电数据处理中,需要有效的射频信号检测和缓解技术。现有的RFI缓解算法通常分为三类:组件分解方法、基于阈值的方法和机器学习方法。基于阈值的算法具有原理清晰、结构简单、易于实现等优点,在实际应用中得到了广泛的应用。其中,SumThreshold方法因其在射频信号检测中的良好性能而受到越来越多的关注。因此,本文对SumThreshold的原理和算法进行了研究,并对其特点和适用性进行了探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The SumThreshold Method for Radio Frequency Interference Detection

Radio frequency interference (RFI) is one of the main challenges in the search of radio targets and their accurate analysis. The efficient RFI detection and mitigation techniques are required in the radio data processing. Existing RFI mitigation algorithms typically fall into three categories: component decomposition methods, threshold-based methods, and machine learning methods. The threshold-based algorithms are widely used in real applications because of its clear principle, simple structure, and easily implementation. Especially, the SumThreshold method is becoming more concerned for its good performance in RFI detection. Therefore, this work investigates the principles and algorithm of SumThreshold, and discusses its characteristics and applicability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Astronomy and Astrophysics
Chinese Astronomy and Astrophysics Physics and Astronomy-Astronomy and Astrophysics
CiteScore
0.70
自引率
0.00%
发文量
20
期刊介绍: The vigorous growth of astronomical and astrophysical science in China led to an increase in papers on astrophysics which Acta Astronomica Sinica could no longer absorb. Translations of papers from two new journals the Chinese Journal of Space Science and Acta Astrophysica Sinica are added to the translation of Acta Astronomica Sinica to form the new journal Chinese Astronomy and Astrophysics. Chinese Astronomy and Astrophysics brings English translations of notable articles to astronomers and astrophysicists outside China.
期刊最新文献
Editorial Board Opportunities and Challenges in the Study of Exoplanetary Atmospheres during the JWST Era YOLOX-CS: An Automatic Search Algorithm for Low Surface Brightness Galaxies Nonlinear Characteristics of Radio Variability in Quasar 3C 446 Waiting Time Distribution of Giant Pulses from the Crab Pulsar Modeled with a Non-stationary Poisson Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1