利用深度学习提高云微服务的性能可预测性

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2019-07-25 DOI:10.1145/3352020.3352026
Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, Christina Delimitrou
{"title":"利用深度学习提高云微服务的性能可预测性","authors":"Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, Christina Delimitrou","doi":"10.1145/3352020.3352026","DOIUrl":null,"url":null,"abstract":"Performance unpredictability is a major roadblock towards cloud adoption, and has performance, cost, and revenue ramifications. Predictable performance is even more critical as cloud services transition from monolithic designs to microservices. Detecting UOS violations after they occur in systems with microservices results in long recovery times, as hotspots propagate and amplify across dependent services.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"53 1","pages":"34 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3352020.3352026","citationCount":"13","resultStr":"{\"title\":\"Leveraging Deep Learning to Improve Performance Predictability in Cloud Microservices with Seer\",\"authors\":\"Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, Christina Delimitrou\",\"doi\":\"10.1145/3352020.3352026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance unpredictability is a major roadblock towards cloud adoption, and has performance, cost, and revenue ramifications. Predictable performance is even more critical as cloud services transition from monolithic designs to microservices. Detecting UOS violations after they occur in systems with microservices results in long recovery times, as hotspots propagate and amplify across dependent services.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"53 1\",\"pages\":\"34 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3352020.3352026\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3352020.3352026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3352020.3352026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 13

摘要

性能的不可预测性是采用云的主要障碍,并会对性能、成本和收入产生影响。随着云服务从单片设计过渡到微服务,可预测的性能变得更加重要。在使用微服务的系统中发生UOS违规行为后,检测这些违规行为会导致恢复时间过长,因为热点会在依赖服务之间传播和放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Deep Learning to Improve Performance Predictability in Cloud Microservices with Seer
Performance unpredictability is a major roadblock towards cloud adoption, and has performance, cost, and revenue ramifications. Predictable performance is even more critical as cloud services transition from monolithic designs to microservices. Detecting UOS violations after they occur in systems with microservices results in long recovery times, as hotspots propagate and amplify across dependent services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1