Arnoux Rossouw, I. I. Vinogradov, G. V. Serpionov, B. L. Gorberg, L. G. Molokanova, A. N. Nechaev
{"title":"钛纳米层磁控溅射滚镀工艺制备复合轨道膜","authors":"Arnoux Rossouw, I. I. Vinogradov, G. V. Serpionov, B. L. Gorberg, L. G. Molokanova, A. N. Nechaev","doi":"10.1134/S2517751622030039","DOIUrl":null,"url":null,"abstract":"<p>The possibility of obtaining a composite track membrane (TM) is investigated. The TM surface was modified by the method of planar magnetron deposition of titanium. The parameters of the magnetron installation operation, such as the deposition rate, the working pressure in the chamber and the magnetron current, have been optimized. The features of the structure and morphology of the 80 nm thick titanium layer have been studied using a combination of methods such as atomic force microscopy, scanning and transmission electron microscopy. X-ray photoelectron spectroscopy revealed that the titanium nanosheet has a complex composition including titanium, titanium oxide, titanium nitride and titanium carbide. The Scratch test showed high adhesion of Ti to TM, which is associated with the formation of an interfacial layer of titanium carbide. It is established that magnetron deposition of Ti does not worsen the operational parameters of TM and reduces the marginal angle of water wetting to a value of about 33° ± 2°. Study of survival and growth rate of fibroblasts of Chinese hamster (V79 line) on PET TM and PET TM with Ti, a slight decrease in the survival rate of fibroblasts on metallized membranes was shown. Titanium sputtering suppresses autofluorescence of the TM surface, which makes it possible to use PET TM with Ti as a substrate for microscopic examination of fluorescent biological objects both in vivo and in vitro. The resulting PET TM with Ti can be used as the basis of skin prostheses and membrane-sorption materials of a new generation. The conducted studies show that magnetron sputtering is a promising approach to the manufacture of metal polymer membrane material.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 3","pages":"177 - 188"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer\",\"authors\":\"Arnoux Rossouw, I. I. Vinogradov, G. V. Serpionov, B. L. Gorberg, L. G. Molokanova, A. N. Nechaev\",\"doi\":\"10.1134/S2517751622030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possibility of obtaining a composite track membrane (TM) is investigated. The TM surface was modified by the method of planar magnetron deposition of titanium. The parameters of the magnetron installation operation, such as the deposition rate, the working pressure in the chamber and the magnetron current, have been optimized. The features of the structure and morphology of the 80 nm thick titanium layer have been studied using a combination of methods such as atomic force microscopy, scanning and transmission electron microscopy. X-ray photoelectron spectroscopy revealed that the titanium nanosheet has a complex composition including titanium, titanium oxide, titanium nitride and titanium carbide. The Scratch test showed high adhesion of Ti to TM, which is associated with the formation of an interfacial layer of titanium carbide. It is established that magnetron deposition of Ti does not worsen the operational parameters of TM and reduces the marginal angle of water wetting to a value of about 33° ± 2°. Study of survival and growth rate of fibroblasts of Chinese hamster (V79 line) on PET TM and PET TM with Ti, a slight decrease in the survival rate of fibroblasts on metallized membranes was shown. Titanium sputtering suppresses autofluorescence of the TM surface, which makes it possible to use PET TM with Ti as a substrate for microscopic examination of fluorescent biological objects both in vivo and in vitro. The resulting PET TM with Ti can be used as the basis of skin prostheses and membrane-sorption materials of a new generation. The conducted studies show that magnetron sputtering is a promising approach to the manufacture of metal polymer membrane material.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 3\",\"pages\":\"177 - 188\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer
The possibility of obtaining a composite track membrane (TM) is investigated. The TM surface was modified by the method of planar magnetron deposition of titanium. The parameters of the magnetron installation operation, such as the deposition rate, the working pressure in the chamber and the magnetron current, have been optimized. The features of the structure and morphology of the 80 nm thick titanium layer have been studied using a combination of methods such as atomic force microscopy, scanning and transmission electron microscopy. X-ray photoelectron spectroscopy revealed that the titanium nanosheet has a complex composition including titanium, titanium oxide, titanium nitride and titanium carbide. The Scratch test showed high adhesion of Ti to TM, which is associated with the formation of an interfacial layer of titanium carbide. It is established that magnetron deposition of Ti does not worsen the operational parameters of TM and reduces the marginal angle of water wetting to a value of about 33° ± 2°. Study of survival and growth rate of fibroblasts of Chinese hamster (V79 line) on PET TM and PET TM with Ti, a slight decrease in the survival rate of fibroblasts on metallized membranes was shown. Titanium sputtering suppresses autofluorescence of the TM surface, which makes it possible to use PET TM with Ti as a substrate for microscopic examination of fluorescent biological objects both in vivo and in vitro. The resulting PET TM with Ti can be used as the basis of skin prostheses and membrane-sorption materials of a new generation. The conducted studies show that magnetron sputtering is a promising approach to the manufacture of metal polymer membrane material.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.