{"title":"CuO -纤维素纳米棒的抗菌活性依赖于新型绿色合成(棉花)","authors":"R. Hussain, W. Aziz, I. A. Ibrahim","doi":"10.22052/JNS.2019.04.017","DOIUrl":null,"url":null,"abstract":"In this study CuO nano sheets were prepared using the cellulose extracted from green synthesis (cotton) as a novel me project. Structural properties were examined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Ultra Violet (UV-Vis). The optimum copper oxide peak was at 2 theta 〖35.44〗^°corresponding to (1 11) while for the cellulose was 〖22.8〗^°corresponds to (002). FESEM images of CuO nano sheets were relatively homogenous with diameters less than 30 nm. The UV-Vis for CuO-cellulose nano rods was observed at 350-360 nm, which is higher than of pure CuO nano sheet. The energy band gaps were 3.20 eV and 3.30 eV of CuO and CuO-CNR respectively. Finally antimicrobial activities of samples have been investigated against the Gram positive (pneumonia) and gram-negative (pseudomonas). The maximum antibacterial activities against the Gram positive (pneumonia) of CuO nano sheet and of CuO- cellulose nano rods are 16 mm and 19 mm respectively. The maximum antibacterial activities against the Gram negative (pseudomonas) of CuO nano sheet and of CuO- cellulose nano rods are 30 mm and 33 mm.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"9 1","pages":"761-767"},"PeriodicalIF":1.4000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antibacterial activity of CuO - cellulose nano rods depends on anew green synthesis (cotton)\",\"authors\":\"R. Hussain, W. Aziz, I. A. Ibrahim\",\"doi\":\"10.22052/JNS.2019.04.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study CuO nano sheets were prepared using the cellulose extracted from green synthesis (cotton) as a novel me project. Structural properties were examined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Ultra Violet (UV-Vis). The optimum copper oxide peak was at 2 theta 〖35.44〗^°corresponding to (1 11) while for the cellulose was 〖22.8〗^°corresponds to (002). FESEM images of CuO nano sheets were relatively homogenous with diameters less than 30 nm. The UV-Vis for CuO-cellulose nano rods was observed at 350-360 nm, which is higher than of pure CuO nano sheet. The energy band gaps were 3.20 eV and 3.30 eV of CuO and CuO-CNR respectively. Finally antimicrobial activities of samples have been investigated against the Gram positive (pneumonia) and gram-negative (pseudomonas). The maximum antibacterial activities against the Gram positive (pneumonia) of CuO nano sheet and of CuO- cellulose nano rods are 16 mm and 19 mm respectively. The maximum antibacterial activities against the Gram negative (pseudomonas) of CuO nano sheet and of CuO- cellulose nano rods are 30 mm and 33 mm.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"9 1\",\"pages\":\"761-767\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2019.04.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2019.04.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Antibacterial activity of CuO - cellulose nano rods depends on anew green synthesis (cotton)
In this study CuO nano sheets were prepared using the cellulose extracted from green synthesis (cotton) as a novel me project. Structural properties were examined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Ultra Violet (UV-Vis). The optimum copper oxide peak was at 2 theta 〖35.44〗^°corresponding to (1 11) while for the cellulose was 〖22.8〗^°corresponds to (002). FESEM images of CuO nano sheets were relatively homogenous with diameters less than 30 nm. The UV-Vis for CuO-cellulose nano rods was observed at 350-360 nm, which is higher than of pure CuO nano sheet. The energy band gaps were 3.20 eV and 3.30 eV of CuO and CuO-CNR respectively. Finally antimicrobial activities of samples have been investigated against the Gram positive (pneumonia) and gram-negative (pseudomonas). The maximum antibacterial activities against the Gram positive (pneumonia) of CuO nano sheet and of CuO- cellulose nano rods are 16 mm and 19 mm respectively. The maximum antibacterial activities against the Gram negative (pseudomonas) of CuO nano sheet and of CuO- cellulose nano rods are 30 mm and 33 mm.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.