V. I. Volkov, N. A. Slesarenko, A. V. Chernyak, V. A. Zabrodin, D. V. Golubenko, V. A. Tverskoy, A. B. Yaroslavtsev
{"title":"核磁共振弛豫研究了Li+, Na+, Cs+阳离子在聚乙烯和接枝磺化聚苯乙烯基磺化交换膜中的迁移率","authors":"V. I. Volkov, N. A. Slesarenko, A. V. Chernyak, V. A. Zabrodin, D. V. Golubenko, V. A. Tverskoy, A. B. Yaroslavtsev","doi":"10.1134/S2517751622030076","DOIUrl":null,"url":null,"abstract":"<p>Mobility of alkaline metal cations Li<sup>+</sup>, Na<sup>+</sup>, Cs<sup>+</sup> in membranes based on polyethylene and sulfonated grafted polystyrene has been investigated by NMR relaxation technique. The kinetic curves of longitude recovery and transverse decay magnetizations of <sup>7</sup>Li, <sup>23</sup>Na, <sup>133</sup>Cs nuclei were recorded. It was indicated that spin relaxation is due to interaction of nuclear quadrupole moment with electric field gradient generated by cation hydrated water molecules and sulfonate groups. The correlation times and activation energies of translational cation mobility have been calculated from spin-lattice (<i>T</i><sub>1</sub>) and spin-spin (<i>Т</i><sub>2</sub>) relaxation temperature dependences. Cation mobility increases in the next sequence Li<sup>+</sup> < Na<sup>+</sup> < Cs<sup>+</sup>. Diffusion coefficients calculated from NMR relaxation have been compared with macroscopic diffusion coefficients measured by pulsed field gradient NMR and impedance spectroscopy techniques. On the basis of this comparison, a model of heterogeneous membrane ionic transfer is discussed. It has been shown that membrane conductivity is restricted by ionic transfer in narrow pores with low functional group concentration.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 3","pages":"189 - 194"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S2517751622030076.pdf","citationCount":"1","resultStr":"{\"title\":\"Mobility of Li+, Na+, Cs+ Cations in Sulfocation-Exchange Membranes Based on Polyethylene and Grafted Sulfonated Polystyrene Studied by NMR Relaxation\",\"authors\":\"V. I. Volkov, N. A. Slesarenko, A. V. Chernyak, V. A. Zabrodin, D. V. Golubenko, V. A. Tverskoy, A. B. Yaroslavtsev\",\"doi\":\"10.1134/S2517751622030076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mobility of alkaline metal cations Li<sup>+</sup>, Na<sup>+</sup>, Cs<sup>+</sup> in membranes based on polyethylene and sulfonated grafted polystyrene has been investigated by NMR relaxation technique. The kinetic curves of longitude recovery and transverse decay magnetizations of <sup>7</sup>Li, <sup>23</sup>Na, <sup>133</sup>Cs nuclei were recorded. It was indicated that spin relaxation is due to interaction of nuclear quadrupole moment with electric field gradient generated by cation hydrated water molecules and sulfonate groups. The correlation times and activation energies of translational cation mobility have been calculated from spin-lattice (<i>T</i><sub>1</sub>) and spin-spin (<i>Т</i><sub>2</sub>) relaxation temperature dependences. Cation mobility increases in the next sequence Li<sup>+</sup> < Na<sup>+</sup> < Cs<sup>+</sup>. Diffusion coefficients calculated from NMR relaxation have been compared with macroscopic diffusion coefficients measured by pulsed field gradient NMR and impedance spectroscopy techniques. On the basis of this comparison, a model of heterogeneous membrane ionic transfer is discussed. It has been shown that membrane conductivity is restricted by ionic transfer in narrow pores with low functional group concentration.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"4 3\",\"pages\":\"189 - 194\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S2517751622030076.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751622030076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mobility of Li+, Na+, Cs+ Cations in Sulfocation-Exchange Membranes Based on Polyethylene and Grafted Sulfonated Polystyrene Studied by NMR Relaxation
Mobility of alkaline metal cations Li+, Na+, Cs+ in membranes based on polyethylene and sulfonated grafted polystyrene has been investigated by NMR relaxation technique. The kinetic curves of longitude recovery and transverse decay magnetizations of 7Li, 23Na, 133Cs nuclei were recorded. It was indicated that spin relaxation is due to interaction of nuclear quadrupole moment with electric field gradient generated by cation hydrated water molecules and sulfonate groups. The correlation times and activation energies of translational cation mobility have been calculated from spin-lattice (T1) and spin-spin (Т2) relaxation temperature dependences. Cation mobility increases in the next sequence Li+ < Na+ < Cs+. Diffusion coefficients calculated from NMR relaxation have been compared with macroscopic diffusion coefficients measured by pulsed field gradient NMR and impedance spectroscopy techniques. On the basis of this comparison, a model of heterogeneous membrane ionic transfer is discussed. It has been shown that membrane conductivity is restricted by ionic transfer in narrow pores with low functional group concentration.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.