{"title":"分布式秘密共享的改进协议","authors":"R. De Prisco, Alfredo De Santis, F. Palmieri","doi":"10.1109/TDSC.2022.3213790","DOIUrl":null,"url":null,"abstract":"In Distributed Secret Sharing schemes, secrets are encoded with shares distributed over multiple nodes of a network. Each involved party has access to a subset of the nodes and thus to a subset of the shares and is able to reconstruct a specific secret. Usually, these schemes are evaluated by measuring the required storage overhead, as well as the encoding and decoding complexities. In this paper, we provide new Distributed (multi) Secret Sharing Protocols for <inline-formula><tex-math notation=\"LaTeX\">$(k,n)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"palmieri-ieq1-3213790.gif\"/></alternatives></inline-formula>-threshold access structures that improve on previous results, characterized by nearly-optimal storage overhead, achieving both storage optimality and a better encoding/decoding complexity. The protocols are also simpler than previous ones and allow for easier encoding.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3558-3571"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Protocols for Distributed Secret Sharing\",\"authors\":\"R. De Prisco, Alfredo De Santis, F. Palmieri\",\"doi\":\"10.1109/TDSC.2022.3213790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Distributed Secret Sharing schemes, secrets are encoded with shares distributed over multiple nodes of a network. Each involved party has access to a subset of the nodes and thus to a subset of the shares and is able to reconstruct a specific secret. Usually, these schemes are evaluated by measuring the required storage overhead, as well as the encoding and decoding complexities. In this paper, we provide new Distributed (multi) Secret Sharing Protocols for <inline-formula><tex-math notation=\\\"LaTeX\\\">$(k,n)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\\\"palmieri-ieq1-3213790.gif\\\"/></alternatives></inline-formula>-threshold access structures that improve on previous results, characterized by nearly-optimal storage overhead, achieving both storage optimality and a better encoding/decoding complexity. The protocols are also simpler than previous ones and allow for easier encoding.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"3558-3571\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3213790\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3213790","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
In Distributed Secret Sharing schemes, secrets are encoded with shares distributed over multiple nodes of a network. Each involved party has access to a subset of the nodes and thus to a subset of the shares and is able to reconstruct a specific secret. Usually, these schemes are evaluated by measuring the required storage overhead, as well as the encoding and decoding complexities. In this paper, we provide new Distributed (multi) Secret Sharing Protocols for $(k,n)$(k,n)-threshold access structures that improve on previous results, characterized by nearly-optimal storage overhead, achieving both storage optimality and a better encoding/decoding complexity. The protocols are also simpler than previous ones and allow for easier encoding.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.