Chaofan Ma, W. Liang, M. Zheng, Xiaofang Xia, Lin Chen
{"title":"一种基于Voronoi图和Q学习的无线电不规则性下中继节点布置方法","authors":"Chaofan Ma, W. Liang, M. Zheng, Xiaofang Xia, Lin Chen","doi":"10.1145/3617124","DOIUrl":null,"url":null,"abstract":"Industrial Wireless Sensor Networks (IWSNs) have been widely used in industrial applications which require high reliable and real-time wireless transmission. A lot of works have been done to optimize the Relay Node Placement (RNP), which determines the underlying topology of IWSNs and hence impacts the network performance. However, existing RNP algorithms use a fixed communication radius to compute the deployment result at once offline, while ignoring that the radio environment may vary drastically across different locations, also known as radio irregularity. To address this limitation, we propose a Voronoi diagram and Q-learning based RNP (VQRNP) method in this paper. Instead of using a fixed communication radius, VQRNP employs the Q-learning algorithm to dynamically update the radio environment of measured areas, uses a Voronoi diagram based method to estimate the radio environment of unmeasured areas, and proposes a coverage extension location selection algorithm to place RNs so as to extend the coverage of the deployed network based on the results estimated by VGG. In this way, the VQRPN method can adapt itself well to the variation of radio environment and largely speed up deployment process. Extensive simulations verify that VQRNP significantly outperforms existing RNP algorithms in terms of reliability.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Voronoi Diagram and Q-Learning based Relay Node Placement Method Subject to Radio Irregularity\",\"authors\":\"Chaofan Ma, W. Liang, M. Zheng, Xiaofang Xia, Lin Chen\",\"doi\":\"10.1145/3617124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial Wireless Sensor Networks (IWSNs) have been widely used in industrial applications which require high reliable and real-time wireless transmission. A lot of works have been done to optimize the Relay Node Placement (RNP), which determines the underlying topology of IWSNs and hence impacts the network performance. However, existing RNP algorithms use a fixed communication radius to compute the deployment result at once offline, while ignoring that the radio environment may vary drastically across different locations, also known as radio irregularity. To address this limitation, we propose a Voronoi diagram and Q-learning based RNP (VQRNP) method in this paper. Instead of using a fixed communication radius, VQRNP employs the Q-learning algorithm to dynamically update the radio environment of measured areas, uses a Voronoi diagram based method to estimate the radio environment of unmeasured areas, and proposes a coverage extension location selection algorithm to place RNs so as to extend the coverage of the deployed network based on the results estimated by VGG. In this way, the VQRPN method can adapt itself well to the variation of radio environment and largely speed up deployment process. Extensive simulations verify that VQRNP significantly outperforms existing RNP algorithms in terms of reliability.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3617124\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3617124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Voronoi Diagram and Q-Learning based Relay Node Placement Method Subject to Radio Irregularity
Industrial Wireless Sensor Networks (IWSNs) have been widely used in industrial applications which require high reliable and real-time wireless transmission. A lot of works have been done to optimize the Relay Node Placement (RNP), which determines the underlying topology of IWSNs and hence impacts the network performance. However, existing RNP algorithms use a fixed communication radius to compute the deployment result at once offline, while ignoring that the radio environment may vary drastically across different locations, also known as radio irregularity. To address this limitation, we propose a Voronoi diagram and Q-learning based RNP (VQRNP) method in this paper. Instead of using a fixed communication radius, VQRNP employs the Q-learning algorithm to dynamically update the radio environment of measured areas, uses a Voronoi diagram based method to estimate the radio environment of unmeasured areas, and proposes a coverage extension location selection algorithm to place RNs so as to extend the coverage of the deployed network based on the results estimated by VGG. In this way, the VQRPN method can adapt itself well to the variation of radio environment and largely speed up deployment process. Extensive simulations verify that VQRNP significantly outperforms existing RNP algorithms in terms of reliability.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.