含硅包覆橡胶橡胶砂浆的性能

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Materiales de Construccion Pub Date : 2021-05-20 DOI:10.3989/MC.2021.11620
J. Li, P. Chen, H. Cai, Y. Xu, X. Tian, C. Li, L. Cui
{"title":"含硅包覆橡胶橡胶砂浆的性能","authors":"J. Li, P. Chen, H. Cai, Y. Xu, X. Tian, C. Li, L. Cui","doi":"10.3989/MC.2021.11620","DOIUrl":null,"url":null,"abstract":"This paper investigates the influence of silica coated rubber on the performance of rubber mortars. A classical Stober sol-gel method is applied to produce a layer of silica coating on rubber particles, which is used to partially replace the fine aggregates in concrete. The effects of the surface-modified rubber particles on the flowability, mechanical strength, capillary water absorption rate, and microstructure of mortars are examined. The results show that the silica coating on the rubber particles reduces the contact angle between the rubber particles from 120° to 103° (i.e., by 17°) and changes the hydrophobic properties from strong hydrophobicity to weak hydrophobicity. The mechanical strengths of mortars are significantly improved by the incorporation of surface-modified rubber particles, i.e., from 41.60% to 44.86% (compressive strength) and from 7.80% to 26.28% (flexural strength). In addition, the incorporation of surface modified rubber particles increases the density of the mortar’s microstructure and enhances the interfaces with its surrounding pastes.","PeriodicalId":51113,"journal":{"name":"Materiales de Construccion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Performance of rubber mortars containing silica coated rubber\",\"authors\":\"J. Li, P. Chen, H. Cai, Y. Xu, X. Tian, C. Li, L. Cui\",\"doi\":\"10.3989/MC.2021.11620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the influence of silica coated rubber on the performance of rubber mortars. A classical Stober sol-gel method is applied to produce a layer of silica coating on rubber particles, which is used to partially replace the fine aggregates in concrete. The effects of the surface-modified rubber particles on the flowability, mechanical strength, capillary water absorption rate, and microstructure of mortars are examined. The results show that the silica coating on the rubber particles reduces the contact angle between the rubber particles from 120° to 103° (i.e., by 17°) and changes the hydrophobic properties from strong hydrophobicity to weak hydrophobicity. The mechanical strengths of mortars are significantly improved by the incorporation of surface-modified rubber particles, i.e., from 41.60% to 44.86% (compressive strength) and from 7.80% to 26.28% (flexural strength). In addition, the incorporation of surface modified rubber particles increases the density of the mortar’s microstructure and enhances the interfaces with its surrounding pastes.\",\"PeriodicalId\":51113,\"journal\":{\"name\":\"Materiales de Construccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiales de Construccion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3989/MC.2021.11620\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiales de Construccion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/MC.2021.11620","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

研究了硅涂层橡胶对橡胶砂浆性能的影响。采用经典的Stober溶胶-凝胶法在橡胶颗粒上制备一层二氧化硅涂层,用于部分取代混凝土中的细骨料。考察了表面改性橡胶颗粒对砂浆流动性、力学强度、毛细吸水率和微观结构的影响。结果表明,橡胶颗粒上的二氧化硅涂层将橡胶颗粒之间的接触角从120°降低到103°(即17°),并使疏水性从强疏水性变为弱疏水性。通过加入表面改性橡胶颗粒,砂浆的机械强度显著提高,即从41.60%提高到44.86%(抗压强度),从7.80%提高到26.28%(抗弯强度)。此外,表面改性橡胶颗粒的加入增加了砂浆微观结构的密度,并增强了与周围浆料的界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of rubber mortars containing silica coated rubber
This paper investigates the influence of silica coated rubber on the performance of rubber mortars. A classical Stober sol-gel method is applied to produce a layer of silica coating on rubber particles, which is used to partially replace the fine aggregates in concrete. The effects of the surface-modified rubber particles on the flowability, mechanical strength, capillary water absorption rate, and microstructure of mortars are examined. The results show that the silica coating on the rubber particles reduces the contact angle between the rubber particles from 120° to 103° (i.e., by 17°) and changes the hydrophobic properties from strong hydrophobicity to weak hydrophobicity. The mechanical strengths of mortars are significantly improved by the incorporation of surface-modified rubber particles, i.e., from 41.60% to 44.86% (compressive strength) and from 7.80% to 26.28% (flexural strength). In addition, the incorporation of surface modified rubber particles increases the density of the mortar’s microstructure and enhances the interfaces with its surrounding pastes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiales de Construccion
Materiales de Construccion 工程技术-材料科学:综合
CiteScore
3.20
自引率
9.50%
发文量
38
审稿时长
>12 weeks
期刊介绍: Materiales de Construcción is a quarterly, scientific Journal published in English, intended for researchers, plant technicians and other professionals engaged in the area of Construction, Materials Science and Technology. Scientific articles focus mainly on: - Physics and chemistry of the formation of cement and other binders. - Cement and concrete. Components (aggregate, admixtures, additions and similar). Behaviour and properties. - Durability and corrosion of other construction materials. - Restoration and conservation of the materials in heritage monuments. - Weathering and the deterioration of construction materials. - Use of industrial waste and by-products in construction. - Manufacture and properties of other construction materials, such as: gypsum/plaster, lime%2
期刊最新文献
Exploring the impact of graphene oxide on mechanical and durability properties of mortars incorporating demolition waste: micro and nano-pore structure effects A low carbon cement (LC3) as a sustainable material in high strength concrete: green concrete The effect of recycled concrete powder (RCP) from precast concrete plant on fresh and mechanical properties of cementitious pastes Effect of fiber section shape and volume fraction on the mechanical properties of steel-fiber reinforced concretes The effect of water absorption distribution of recycled coarse aggregate on the compressive strength distribution of high-performance concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1