模糊时间序列PENERAPAN在MERAMALKAN玩新冠肺炎世界的探访19

Besse Helmi Mustawinar, N. ADHALIA H, M. Sam
{"title":"模糊时间序列PENERAPAN在MERAMALKAN玩新冠肺炎世界的探访19","authors":"Besse Helmi Mustawinar, N. ADHALIA H, M. Sam","doi":"10.24843/mtk.2022.v11.i03.p374","DOIUrl":null,"url":null,"abstract":"Tourism is one of Indonesia’s assets to promote economic growth. This sector became one of the largest contributors to national foreign exchange. The number of foreign tourist visits is an indicator of the contribution of tourism which has experiencing the upward trend in annually until the Covid19 happened. In this study, forecasting the number of foreign tourists is needed as a plan to improve the quality of tourism during the pandemic. We used Fuzzy Time Series (FTS) Cheng method. The actual data processed comes from the Central Statistics Agency from April 2020 through December 2021. Based on forecasting results, the performance of the forecasting model is in the very good category with Mean Absolute Percentage Error (MAPE) value is 5.06%. It means that our predictions are on average 5.06% away from the actual values they were aiming for. In other side, we have forecasting accuracy value is 94.94% which means that the forecast values were close to the actual. \nKeywords:  Tourist, FTS, Cheng Methods","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN FUZZY TIME SERIES DALAM MERAMALKAN JUMLAH WISATAWAN DI MASA PANDEMI COVID19\",\"authors\":\"Besse Helmi Mustawinar, N. ADHALIA H, M. Sam\",\"doi\":\"10.24843/mtk.2022.v11.i03.p374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tourism is one of Indonesia’s assets to promote economic growth. This sector became one of the largest contributors to national foreign exchange. The number of foreign tourist visits is an indicator of the contribution of tourism which has experiencing the upward trend in annually until the Covid19 happened. In this study, forecasting the number of foreign tourists is needed as a plan to improve the quality of tourism during the pandemic. We used Fuzzy Time Series (FTS) Cheng method. The actual data processed comes from the Central Statistics Agency from April 2020 through December 2021. Based on forecasting results, the performance of the forecasting model is in the very good category with Mean Absolute Percentage Error (MAPE) value is 5.06%. It means that our predictions are on average 5.06% away from the actual values they were aiming for. In other side, we have forecasting accuracy value is 94.94% which means that the forecast values were close to the actual. \\nKeywords:  Tourist, FTS, Cheng Methods\",\"PeriodicalId\":11600,\"journal\":{\"name\":\"E-Jurnal Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"E-Jurnal Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24843/mtk.2022.v11.i03.p374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2022.v11.i03.p374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旅游业是印尼促进经济增长的资产之一。这一部门成为国家外汇的最大贡献者之一。外国游客数量是衡量旅游业贡献的指标,在新冠疫情发生之前,旅游业的贡献一直呈逐年上升趋势。在本研究中,需要预测外国游客的数量,作为提高大流行期间旅游质量的计划。我们使用模糊时间序列(FTS)程方法。实际处理的数据来自中央统计局,时间为2020年4月至2021年12月。从预测结果来看,该模型的预测性能处于非常好的类别,平均绝对百分比误差(MAPE)值为5.06%。这意味着我们的预测与实际目标值平均相差5.06%。另一方面,我们的预测精度值为94.94%,这意味着预测值接近实际。关键词:游客,FTS,程法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PENERAPAN FUZZY TIME SERIES DALAM MERAMALKAN JUMLAH WISATAWAN DI MASA PANDEMI COVID19
Tourism is one of Indonesia’s assets to promote economic growth. This sector became one of the largest contributors to national foreign exchange. The number of foreign tourist visits is an indicator of the contribution of tourism which has experiencing the upward trend in annually until the Covid19 happened. In this study, forecasting the number of foreign tourists is needed as a plan to improve the quality of tourism during the pandemic. We used Fuzzy Time Series (FTS) Cheng method. The actual data processed comes from the Central Statistics Agency from April 2020 through December 2021. Based on forecasting results, the performance of the forecasting model is in the very good category with Mean Absolute Percentage Error (MAPE) value is 5.06%. It means that our predictions are on average 5.06% away from the actual values they were aiming for. In other side, we have forecasting accuracy value is 94.94% which means that the forecast values were close to the actual. Keywords:  Tourist, FTS, Cheng Methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
期刊最新文献
The Potential Impact of Agouti Related Peptide and Asprosin on Metabolic Parameters and Eating Behavior in Attention Deficit Hyperactivity Disorder. PENGELOMPOKKAN KABUPATEN DI PROVINSI JAWA TENGAH BERDASARKAN KARAKTERISTIK IKLIM MENGGUNAKAN FUZZY CLUSTERING Perhitungan Premi Asuransi Menggunakan Model Select Table Pada Asuransi Joint Life PENERAPAN MODEL INVENTORI PROBABILISTIK FUZZY MULTIOBJEKTIF PADA SISTEM PERSEDIAAN BUAH SALAK KAUSALITAS ANTARA ANXIETY, SOCIAL PHOBIA TERHADAP PEMAIN VIDEO GAME
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1