利用机器学习方法预测头部相关传递函数

IF 1.3 Q3 ACOUSTICS Acoustics (Basel, Switzerland) Pub Date : 2023-03-01 DOI:10.3390/acoustics5010015
R. Fernandez Martinez, P. Jimbert, E. M. Sumner, M. Riedel, Runar Unnthorsson
{"title":"利用机器学习方法预测头部相关传递函数","authors":"R. Fernandez Martinez, P. Jimbert, E. M. Sumner, M. Riedel, Runar Unnthorsson","doi":"10.3390/acoustics5010015","DOIUrl":null,"url":null,"abstract":"The generation of a virtual, personal, auditory space to obtain a high-quality sound experience when using headphones is of great significance. Normally this experience is improved using personalized head-related transfer functions (HRTFs) that depend on a large degree of personal anthropometric information on pinnae. Most of the studies focus their personal auditory optimization analysis on the study of amplitude versus frequency on HRTFs, mainly in the search for significant elevation cues of frequency maps. Therefore, knowing the HRTFs of each individual is of considerable help to improve sound quality. The following work proposes a methodology to model HRTFs according to the individual structure of pinnae using multilayer perceptron and linear regression techniques. It is proposed to generate several models that allow knowing HRTFs amplitude for each frequency based on the personal anthropometric data on pinnae, the azimuth angle, and the elevation of the sound source, thus predicting frequency magnitudes. Experiments show that the prediction of new personal HRTF generates low errors, thus this model can be applied to new heads with different pinnae characteristics with high confidence. Improving the results obtained with the standard KEMAR pinna, usually used in cases where there is a lack of information.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Head Related Transfer Functions Using Machine Learning Approaches\",\"authors\":\"R. Fernandez Martinez, P. Jimbert, E. M. Sumner, M. Riedel, Runar Unnthorsson\",\"doi\":\"10.3390/acoustics5010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of a virtual, personal, auditory space to obtain a high-quality sound experience when using headphones is of great significance. Normally this experience is improved using personalized head-related transfer functions (HRTFs) that depend on a large degree of personal anthropometric information on pinnae. Most of the studies focus their personal auditory optimization analysis on the study of amplitude versus frequency on HRTFs, mainly in the search for significant elevation cues of frequency maps. Therefore, knowing the HRTFs of each individual is of considerable help to improve sound quality. The following work proposes a methodology to model HRTFs according to the individual structure of pinnae using multilayer perceptron and linear regression techniques. It is proposed to generate several models that allow knowing HRTFs amplitude for each frequency based on the personal anthropometric data on pinnae, the azimuth angle, and the elevation of the sound source, thus predicting frequency magnitudes. Experiments show that the prediction of new personal HRTF generates low errors, thus this model can be applied to new heads with different pinnae characteristics with high confidence. Improving the results obtained with the standard KEMAR pinna, usually used in cases where there is a lack of information.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在使用耳机时,生成一个虚拟的、个人的听觉空间以获得高质量的声音体验具有重要意义。通常,这种体验是通过使用个性化的头部相关传递函数(HRTF)来改善的,该传递函数依赖于耳廓上的大量个人人体测量信息。大多数研究将其个人听觉优化分析集中在HRTF上振幅与频率的研究上,主要是在搜索频率图的显著仰角线索。因此,了解每个人的HRTF对提高音质有很大帮助。以下工作提出了一种使用多层感知器和线性回归技术根据耳廓的个体结构对HRTF进行建模的方法。提出了基于耳廓的个人人体测量数据、方位角和声源的仰角来生成几个模型,这些模型允许知道每个频率的HRTF幅度,从而预测频率幅度。实验表明,新的个人HRTF的预测误差较小,因此该模型可以高置信度地应用于具有不同耳廓特征的新型头部。改进使用标准KEMAR耳廓获得的结果,通常用于缺乏信息的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Head Related Transfer Functions Using Machine Learning Approaches
The generation of a virtual, personal, auditory space to obtain a high-quality sound experience when using headphones is of great significance. Normally this experience is improved using personalized head-related transfer functions (HRTFs) that depend on a large degree of personal anthropometric information on pinnae. Most of the studies focus their personal auditory optimization analysis on the study of amplitude versus frequency on HRTFs, mainly in the search for significant elevation cues of frequency maps. Therefore, knowing the HRTFs of each individual is of considerable help to improve sound quality. The following work proposes a methodology to model HRTFs according to the individual structure of pinnae using multilayer perceptron and linear regression techniques. It is proposed to generate several models that allow knowing HRTFs amplitude for each frequency based on the personal anthropometric data on pinnae, the azimuth angle, and the elevation of the sound source, thus predicting frequency magnitudes. Experiments show that the prediction of new personal HRTF generates low errors, thus this model can be applied to new heads with different pinnae characteristics with high confidence. Improving the results obtained with the standard KEMAR pinna, usually used in cases where there is a lack of information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps Importance of Noise Hygiene in Dairy Cattle Farming—A Review Finite Element–Boundary Element Acoustic Backscattering with Model Reduction of Surface Pressure Based on Coherent Clusters Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure Sound Environment during Dental Treatment in Relation to COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1