函数空间优化问题的稳定序列二次规划方法

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Numerical Functional Analysis and Optimization Pub Date : 2023-04-27 DOI:10.1080/01630563.2023.2178009
Yuya Yamakawa
{"title":"函数空间优化问题的稳定序列二次规划方法","authors":"Yuya Yamakawa","doi":"10.1080/01630563.2023.2178009","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a stabilized sequential quadratic programming (SQP) method for optimization problems in function spaces. A form of the problem considered in this paper can widely formulate many types of applications, such as obstacle problems, optimal control problems, and so on. Moreover, the proposed method is based on the existing stabilized SQP method and can find a point satisfying the Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remarkable points is that we prove its global convergence to such a point under some assumptions without any constraint qualifications. In addition, we guarantee that an arbitrary accumulation point generated by the proposed method satisfies the KKT conditions under several additional assumptions. Finally, we report some numerical experiments to examine the effectiveness of the proposed method.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"44 1","pages":"867 - 905"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Stabilized Sequential Quadratic Programming Method for Optimization Problems in Function Spaces\",\"authors\":\"Yuya Yamakawa\",\"doi\":\"10.1080/01630563.2023.2178009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a stabilized sequential quadratic programming (SQP) method for optimization problems in function spaces. A form of the problem considered in this paper can widely formulate many types of applications, such as obstacle problems, optimal control problems, and so on. Moreover, the proposed method is based on the existing stabilized SQP method and can find a point satisfying the Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remarkable points is that we prove its global convergence to such a point under some assumptions without any constraint qualifications. In addition, we guarantee that an arbitrary accumulation point generated by the proposed method satisfies the KKT conditions under several additional assumptions. Finally, we report some numerical experiments to examine the effectiveness of the proposed method.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"44 1\",\"pages\":\"867 - 905\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2178009\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2178009","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种求解函数空间优化问题的稳定序列二次规划方法。本文所考虑的一种形式的问题可以广泛地表述许多类型的应用,如障碍问题、最优控制问题等。此外,该方法基于现有的稳定SQP方法,可以找到满足Karush-Kuhn-Tucker(KKT)或渐近KKT条件的点。值得注意的一点是,我们在没有任何约束条件的情况下,在一些假设下证明了它的全局收敛性。此外,我们保证由所提出的方法生成的任意累积点在几个附加假设下满足KKT条件。最后,我们报告了一些数值实验来检验该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Stabilized Sequential Quadratic Programming Method for Optimization Problems in Function Spaces
Abstract In this paper, we propose a stabilized sequential quadratic programming (SQP) method for optimization problems in function spaces. A form of the problem considered in this paper can widely formulate many types of applications, such as obstacle problems, optimal control problems, and so on. Moreover, the proposed method is based on the existing stabilized SQP method and can find a point satisfying the Karush-Kuhn-Tucker (KKT) or asymptotic KKT conditions. One of the remarkable points is that we prove its global convergence to such a point under some assumptions without any constraint qualifications. In addition, we guarantee that an arbitrary accumulation point generated by the proposed method satisfies the KKT conditions under several additional assumptions. Finally, we report some numerical experiments to examine the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
期刊最新文献
Continuous Generative Neural Networks: A Wavelet-Based Architecture in Function Spaces. Iteratively Refined Image Reconstruction with Learned Attentive Regularizers. On the Type of Ill-Posedness of Generalized Hilbert Matrices and Related Operators On the Bregman-proximal iterative algorithm for the monotone inclusion problem in Banach spaces On Diferential Inclusions Arising from Some Discontinuous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1