首页 > 最新文献

Numerical Functional Analysis and Optimization最新文献

英文 中文
Continuous Generative Neural Networks: A Wavelet-Based Architecture in Function Spaces. 连续生成神经网络:一种基于小波的函数空间结构。
IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-11-19 eCollection Date: 2025-01-01 DOI: 10.1080/01630563.2024.2422064
Giovanni S Alberti, Matteo Santacesaria, Silvia Sciutto

In this work, we present and study Continuous Generative Neural Networks (CGNNs), namely, generative models in the continuous setting: the output of a CGNN belongs to an infinite-dimensional function space. The architecture is inspired by DCGAN, with one fully connected layer, several convolutional layers and nonlinear activation functions. In the continuous L 2 setting, the dimensions of the spaces of each layer are replaced by the scales of a multiresolution analysis of a compactly supported wavelet. We present conditions on the convolutional filters and on the nonlinearity that guarantee that a CGNN is injective. This theory finds applications to inverse problems, and allows for deriving Lipschitz stability estimates for (possibly nonlinear) infinite-dimensional inverse problems with unknowns belonging to the manifold generated by a CGNN. Several numerical simulations, including signal deblurring, illustrate and validate this approach.

在这项工作中,我们提出并研究了连续生成神经网络(CGNN),即连续设置下的生成模型:CGNN的输出属于无限维函数空间。该结构受DCGAN的启发,具有一个全连接层,多个卷积层和非线性激活函数。在连续l2设置中,每层空间的维度被紧支持小波的多分辨率分析的尺度所取代。我们给出了保证CGNN是内射的卷积滤波器和非线性的条件。这一理论发现了反问题的应用,并允许推导(可能是非线性的)无限维反问题的Lipschitz稳定性估计,这些问题属于由CGNN生成的流形。几个数值模拟,包括信号去模糊,说明并验证了这种方法。
{"title":"Continuous Generative Neural Networks: A Wavelet-Based Architecture in Function Spaces.","authors":"Giovanni S Alberti, Matteo Santacesaria, Silvia Sciutto","doi":"10.1080/01630563.2024.2422064","DOIUrl":"10.1080/01630563.2024.2422064","url":null,"abstract":"<p><p>In this work, we present and study Continuous Generative Neural Networks (CGNNs), namely, generative models in the continuous setting: the output of a CGNN belongs to an infinite-dimensional function space. The architecture is inspired by DCGAN, with one fully connected layer, several convolutional layers and nonlinear activation functions. In the continuous <i>L</i> <sup>2</sup> setting, the dimensions of the spaces of each layer are replaced by the scales of a multiresolution analysis of a compactly supported wavelet. We present conditions on the convolutional filters and on the nonlinearity that guarantee that a CGNN is injective. This theory finds applications to inverse problems, and allows for deriving Lipschitz stability estimates for (possibly nonlinear) infinite-dimensional inverse problems with unknowns belonging to the manifold generated by a CGNN. Several numerical simulations, including signal deblurring, illustrate and validate this approach.</p>","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"46 1","pages":"1-44"},"PeriodicalIF":1.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iteratively Refined Image Reconstruction with Learned Attentive Regularizers. 利用学习型注意正则迭代精炼图像重构
IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-08-11 eCollection Date: 2024-01-01 DOI: 10.1080/01630563.2024.2384849
Mehrsa Pourya, Sebastian Neumayer, Michael Unser

We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.

我们提出了一种用于图像重建的正则化方案,它充分利用了深度学习的力量,同时又以经典的稀疏性促进模型为基础。许多基于深度学习的模型难以解释,理论分析也很繁琐。相比之下,我们的方案是可解释的,因为它对应于一系列凸问题的最小化。对于系列中的每个问题,都会根据之前的解决方案生成一个掩码,以在空间上完善正则化强度。这样,模型就能逐步关注图像结构。对于底层更新算子,我们证明了定点的存在。作为一个特例,我们研究了一种掩膜生成器,其定点迭代收敛于一个显式能量函数的临界点。在实验中,我们在逆问题求解方面的表现与最先进的学习变分模型不相上下。此外,我们还在可解释性、理论保证、可靠性和性能之间取得了良好的平衡。
{"title":"Iteratively Refined Image Reconstruction with Learned Attentive Regularizers.","authors":"Mehrsa Pourya, Sebastian Neumayer, Michael Unser","doi":"10.1080/01630563.2024.2384849","DOIUrl":"10.1080/01630563.2024.2384849","url":null,"abstract":"<p><p>We propose a regularization scheme for image reconstruction that leverages the power of deep learning while hinging on classic sparsity-promoting models. Many deep-learning-based models are hard to interpret and cumbersome to analyze theoretically. In contrast, our scheme is interpretable because it corresponds to the minimization of a series of convex problems. For each problem in the series, a mask is generated based on the previous solution to refine the regularization strength spatially. In this way, the model becomes progressively attentive to the image structure. For the underlying update operator, we prove the existence of a fixed point. As a special case, we investigate a mask generator for which the fixed-point iterations converge to a critical point of an explicit energy functional. In our experiments, we match the performance of state-of-the-art learned variational models for the solution of inverse problems. Additionally, we offer a promising balance between interpretability, theoretical guarantees, reliability, and performance.</p>","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"45 7-9","pages":"411-440"},"PeriodicalIF":1.4,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Type of Ill-Posedness of Generalized Hilbert Matrices and Related Operators 论广义希尔伯特矩阵及相关算子的问题类型
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-08-11 DOI: 10.1080/01630563.2024.2384869
Stefan Kindermann
We consider infinite-dimensional generalized Hilbert matrices of the form Hi,j=didjxi+xj, where di are nonnegative weights and xi are pairwise distinct positive numbers. We state sufficient and, fo...
我们考虑 Hi,j=didjxi+xj 形式的无限维广义希尔伯特矩阵,其中 di 是非负权重,xi 是成对的不同正数。我们陈述了充分的和有...
{"title":"On the Type of Ill-Posedness of Generalized Hilbert Matrices and Related Operators","authors":"Stefan Kindermann","doi":"10.1080/01630563.2024.2384869","DOIUrl":"https://doi.org/10.1080/01630563.2024.2384869","url":null,"abstract":"We consider infinite-dimensional generalized Hilbert matrices of the form Hi,j=didjxi+xj, where di are nonnegative weights and xi are pairwise distinct positive numbers. We state sufficient and, fo...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"9 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142199962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Bregman-proximal iterative algorithm for the monotone inclusion problem in Banach spaces 论巴拿赫空间中单调包含问题的布雷格曼-近似迭代算法
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-05-29 DOI: 10.1080/01630563.2024.2349006
Yan Tang, Shiqing Zhang, Yeol Je Cho
In this paper, we focus on the solution of a class of monotone inclusion problems in reflexive Banach spaces. To reflect the geometry of the space and the operator, a more general proximal point it...
本文主要研究反身巴拿赫空间中一类单调包含问题的求解。为了反映空间和算子的几何特性,我们提出了一个更一般的近点...
{"title":"On the Bregman-proximal iterative algorithm for the monotone inclusion problem in Banach spaces","authors":"Yan Tang, Shiqing Zhang, Yeol Je Cho","doi":"10.1080/01630563.2024.2349006","DOIUrl":"https://doi.org/10.1080/01630563.2024.2349006","url":null,"abstract":"In this paper, we focus on the solution of a class of monotone inclusion problems in reflexive Banach spaces. To reflect the geometry of the space and the operator, a more general proximal point it...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"28 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Dai-Liao Conjugate Gradient Method based on Approximately Optimal Stepsize for Unconstrained Optimization 基于无约束优化的近似最优步长的新岱廖梯度共轭法
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-04-02 DOI: 10.1080/01630563.2024.2333255
Yan Ni, Liu Zexian
Conjugate gradient methods are a class of very effective iterative methods for large-scale unconstrained optimization. In this paper, a new Dai-Liao conjugate gradient method for solving large-scal...
共轭梯度法是一类用于大规模无约束优化的非常有效的迭代方法。本文提出了一种新的岱廖共轭梯度法,用于求解大规模无约束优化问题。
{"title":"A New Dai-Liao Conjugate Gradient Method based on Approximately Optimal Stepsize for Unconstrained Optimization","authors":"Yan Ni, Liu Zexian","doi":"10.1080/01630563.2024.2333255","DOIUrl":"https://doi.org/10.1080/01630563.2024.2333255","url":null,"abstract":"Conjugate gradient methods are a class of very effective iterative methods for large-scale unconstrained optimization. In this paper, a new Dai-Liao conjugate gradient method for solving large-scal...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"85 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Diferential Inclusions Arising from Some Discontinuous Systems 论某些不连续系统产生的差分夹杂物
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-04-02 DOI: 10.1080/01630563.2024.2333251
A. V. Fominyh
The paper deals with systems of ordinary differential equations containing in the right-hand side controls which are discontinuous in phase variables. These controls cause the occurrence of sliding...
本文涉及的常微分方程系统在右侧控制中包含在相位变量中不连续的控制。这些控制导致出现滑动...
{"title":"On Diferential Inclusions Arising from Some Discontinuous Systems","authors":"A. V. Fominyh","doi":"10.1080/01630563.2024.2333251","DOIUrl":"https://doi.org/10.1080/01630563.2024.2333251","url":null,"abstract":"The paper deals with systems of ordinary differential equations containing in the right-hand side controls which are discontinuous in phase variables. These controls cause the occurrence of sliding...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"89 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motzkin Sequence Spaces and Motzkin Core 莫兹金序列空间和莫兹金核心
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-04-02 DOI: 10.1080/01630563.2024.2333250
Sezer Erdem, Serkan Demiriz, Adem Şahin
In the current work, it is constructed the Motzkin matrix obtained by using Motzkin numbers M=(mrs) and is examined the sequence spaces c(M) and c0(M) described as the domain of Motzkin matrix M...
在当前的工作中,利用莫兹金数 M=(mrs) 构造了莫兹金矩阵,并研究了作为莫兹金矩阵 M 域的序列空间 c(M) 和 c0(M)...
{"title":"Motzkin Sequence Spaces and Motzkin Core","authors":"Sezer Erdem, Serkan Demiriz, Adem Şahin","doi":"10.1080/01630563.2024.2333250","DOIUrl":"https://doi.org/10.1080/01630563.2024.2333250","url":null,"abstract":"In the current work, it is constructed the Motzkin matrix obtained by using Motzkin numbers M=(mrs) and is examined the sequence spaces c(M) and c0(M) described as the domain of Motzkin matrix M...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"131 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domain Generalization by Functional Regression 通过函数回归实现领域泛化
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-03-04 DOI: 10.1080/01630563.2024.2320663
Markus Holzleitner, Sergei V. Pereverzyev, Werner Zellinger
The problem of domain generalization is to learn, given data from different source distributions, a model that can be expected to generalize well on new target distributions which are only seen thr...
领域泛化的问题是,在给定来自不同源分布的数据时,学习一个模型,该模型有望在新的目标分布上很好地泛化,而新的目标分布只有在......
{"title":"Domain Generalization by Functional Regression","authors":"Markus Holzleitner, Sergei V. Pereverzyev, Werner Zellinger","doi":"10.1080/01630563.2024.2320663","DOIUrl":"https://doi.org/10.1080/01630563.2024.2320663","url":null,"abstract":"The problem of domain generalization is to learn, given data from different source distributions, a model that can be expected to generalize well on new target distributions which are only seen thr...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"232 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140033909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rates of Convergence and Metastability for Chidume’s Algorithm for the Approximation of Zeros of Accretive Operators in Banach Spaces 巴拿赫空间中可变算子零点逼近奇杜梅算法的收敛率和可转移性
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-02-28 DOI: 10.1080/01630563.2024.2318597
Richard Findling, Ulrich Kohlenbach
In this paper we give a quantitative analysis of an explicit iteration method due to C.E. Chidume for the approximation of a zero of an m-accretive operator A:X→2X in Banach spaces which does not i...
本文对C.E. Chidume提出的一种显式迭代法进行了定量分析,该方法用于逼近巴拿赫空间中的m-自增算子A:X→2X的零点,而该算子不...
{"title":"Rates of Convergence and Metastability for Chidume’s Algorithm for the Approximation of Zeros of Accretive Operators in Banach Spaces","authors":"Richard Findling, Ulrich Kohlenbach","doi":"10.1080/01630563.2024.2318597","DOIUrl":"https://doi.org/10.1080/01630563.2024.2318597","url":null,"abstract":"In this paper we give a quantitative analysis of an explicit iteration method due to C.E. Chidume for the approximation of a zero of an m-accretive operator A:X→2X in Banach spaces which does not i...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"15 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularized Nyström Subsampling in Covariate Shift Domain Adaptation Problems 变量偏移域适应问题中的正则化尼斯特伦子采样
IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2024-02-23 DOI: 10.1080/01630563.2024.2318572
Hanna L. Myleiko, Sergei G. Solodky
The unsupervised domain adaptation problem with covariate shift assumption is considered. Within the framework of the Reproducing Kernel Hilbert Space concept, an algorithm is constructed that is a...
研究考虑了具有协变量移动假设的无监督域适应问题。在重现核希尔伯特空间概念的框架内,构建了一种算法,该算法是...
{"title":"Regularized Nyström Subsampling in Covariate Shift Domain Adaptation Problems","authors":"Hanna L. Myleiko, Sergei G. Solodky","doi":"10.1080/01630563.2024.2318572","DOIUrl":"https://doi.org/10.1080/01630563.2024.2318572","url":null,"abstract":"The unsupervised domain adaptation problem with covariate shift assumption is considered. Within the framework of the Reproducing Kernel Hilbert Space concept, an algorithm is constructed that is a...","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"36 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Numerical Functional Analysis and Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1