研究和优化氢生物柴油与纳米添加剂混合对配备废气再循环的发动机排放的影响

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Biofuels-Uk Pub Date : 2023-01-04 DOI:10.1080/17597269.2022.2148877
Mohammad Javad Eslami, Bahram Hosseinzadeh Samani, S. Rostami, R. Ebrahimi, A. Shirneshan
{"title":"研究和优化氢生物柴油与纳米添加剂混合对配备废气再循环的发动机排放的影响","authors":"Mohammad Javad Eslami, Bahram Hosseinzadeh Samani, S. Rostami, R. Ebrahimi, A. Shirneshan","doi":"10.1080/17597269.2022.2148877","DOIUrl":null,"url":null,"abstract":"Abstract The current research was conducted with the aim of investigating the combined effect of diesel, biodiesel, hydrogen, aluminum oxide nanoparticles (Al2O3) and Exhaust Gas Recirculation (EGR) system on diesel engine emissions and performance. Data analysis showed that with a 30% increase in biodiesel, the amounts of Hydrocarbons (HC) and Carbon Monoxide (CO) decreased by 11.7% and 14.9%, respectively. However, it reduced power and torque. Increasing the share of EGR in the intake air decreased the power and torque due to the decrease of oxygen, and by adding 30% of the exhaust gas to the intake air, it reduced the amount of HC by 3.2%. However, it caused an increase in CO. By increasing the concentration of Al2O3 from 30 ppm to 60 ppm, the amount of HC decreased by 5.4%. Further increase to 90 ppm reduced CO by 5.8% but increased nitrogen oxides (NOx) by 8%. However, the torque increased by 4.89%. Increasing hydrogen by 10% of intake air volume increased power and torque by 16%, but also increased CO by 7.19%. However, further increase of hydrogen decreased power and torque. The optimal point obtained for Al2O3, hydrogen, biodiesel and EGR compounds was 61, 10, 20 and 15% ppm, respectively.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating and optimizing the mixture of hydrogen-biodiesel and nano-additive on emissions of the engine equipped with exhaust gas recirculation\",\"authors\":\"Mohammad Javad Eslami, Bahram Hosseinzadeh Samani, S. Rostami, R. Ebrahimi, A. Shirneshan\",\"doi\":\"10.1080/17597269.2022.2148877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The current research was conducted with the aim of investigating the combined effect of diesel, biodiesel, hydrogen, aluminum oxide nanoparticles (Al2O3) and Exhaust Gas Recirculation (EGR) system on diesel engine emissions and performance. Data analysis showed that with a 30% increase in biodiesel, the amounts of Hydrocarbons (HC) and Carbon Monoxide (CO) decreased by 11.7% and 14.9%, respectively. However, it reduced power and torque. Increasing the share of EGR in the intake air decreased the power and torque due to the decrease of oxygen, and by adding 30% of the exhaust gas to the intake air, it reduced the amount of HC by 3.2%. However, it caused an increase in CO. By increasing the concentration of Al2O3 from 30 ppm to 60 ppm, the amount of HC decreased by 5.4%. Further increase to 90 ppm reduced CO by 5.8% but increased nitrogen oxides (NOx) by 8%. However, the torque increased by 4.89%. Increasing hydrogen by 10% of intake air volume increased power and torque by 16%, but also increased CO by 7.19%. However, further increase of hydrogen decreased power and torque. The optimal point obtained for Al2O3, hydrogen, biodiesel and EGR compounds was 61, 10, 20 and 15% ppm, respectively.\",\"PeriodicalId\":56057,\"journal\":{\"name\":\"Biofuels-Uk\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuels-Uk\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17597269.2022.2148877\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17597269.2022.2148877","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究旨在研究柴油、生物柴油、氢气、氧化铝纳米颗粒(Al2O3)和废气再循环(EGR)系统对柴油机排放和性能的综合影响。数据分析表明,每增加30%的生物柴油,碳氢化合物(HC)和一氧化碳(CO)的含量分别下降11.7%和14.9%。然而,它降低了功率和扭矩。增加EGR在进气中的份额,由于氧气的减少,功率和扭矩降低,通过在进气中添加30%的废气,HC的数量减少了3.2%。Al2O3的浓度从30 ppm增加到60 ppm, HC的含量下降了5.4%。进一步增加到90ppm, CO减少5.8%,但氮氧化物(NOx)增加8%。然而,扭矩增加了4.89%。将进气气量增加10%的氢气可使功率和扭矩提高16%,但CO也增加了7.19%。然而,进一步增加氢会降低功率和扭矩。Al2O3、氢气、生物柴油和EGR化合物的最佳添加点分别为61、10、20和15% ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating and optimizing the mixture of hydrogen-biodiesel and nano-additive on emissions of the engine equipped with exhaust gas recirculation
Abstract The current research was conducted with the aim of investigating the combined effect of diesel, biodiesel, hydrogen, aluminum oxide nanoparticles (Al2O3) and Exhaust Gas Recirculation (EGR) system on diesel engine emissions and performance. Data analysis showed that with a 30% increase in biodiesel, the amounts of Hydrocarbons (HC) and Carbon Monoxide (CO) decreased by 11.7% and 14.9%, respectively. However, it reduced power and torque. Increasing the share of EGR in the intake air decreased the power and torque due to the decrease of oxygen, and by adding 30% of the exhaust gas to the intake air, it reduced the amount of HC by 3.2%. However, it caused an increase in CO. By increasing the concentration of Al2O3 from 30 ppm to 60 ppm, the amount of HC decreased by 5.4%. Further increase to 90 ppm reduced CO by 5.8% but increased nitrogen oxides (NOx) by 8%. However, the torque increased by 4.89%. Increasing hydrogen by 10% of intake air volume increased power and torque by 16%, but also increased CO by 7.19%. However, further increase of hydrogen decreased power and torque. The optimal point obtained for Al2O3, hydrogen, biodiesel and EGR compounds was 61, 10, 20 and 15% ppm, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofuels-Uk
Biofuels-Uk Energy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍: Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy. The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources. As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation. Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication. As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.
期刊最新文献
Comparative assessment of biochar produced from LDPE and neem leaves using batch and semi-batch biomass fuel-based reactors Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate Environmental footprint evaluation of Jatropha biodiesel production and utilization in Ethiopia: a comprehensive well-to-wheel life cycle analysis Potential of thermophilic bacteria isolated from cow dung-grass compost for bioethanol production using floral waste Enhancing biochar properties through doping: A comparative study of sugarcane bagasse and chicken feather
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1