Xuanpu Zhang, Zhihan Wang, Shi Liu, Siyu Gou, R. Fan, Duo Jin, Z. Bai, Zhen-xu Bai
{"title":"固体激光器单纵模选择技术的发展","authors":"Xuanpu Zhang, Zhihan Wang, Shi Liu, Siyu Gou, R. Fan, Duo Jin, Z. Bai, Zhen-xu Bai","doi":"10.1155/2021/6667015","DOIUrl":null,"url":null,"abstract":"Lasers with narrow linewidths and single frequencies are widely used in fields such as radar detection, nonlinear optics, and precision measurements. The demand for such lasers has promoted the rapid development of single-longitudinal-mode (SLM) selection technology. Here, we highlight the working principles of current mainstream SLM selection technologies and the recent advances in the field. We compare the characteristics of different SLM selection methods and list the challenges faced by these technologies.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Development of Single-Longitudinal-Mode Selection Technology for Solid-State Lasers\",\"authors\":\"Xuanpu Zhang, Zhihan Wang, Shi Liu, Siyu Gou, R. Fan, Duo Jin, Z. Bai, Zhen-xu Bai\",\"doi\":\"10.1155/2021/6667015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lasers with narrow linewidths and single frequencies are widely used in fields such as radar detection, nonlinear optics, and precision measurements. The demand for such lasers has promoted the rapid development of single-longitudinal-mode (SLM) selection technology. Here, we highlight the working principles of current mainstream SLM selection technologies and the recent advances in the field. We compare the characteristics of different SLM selection methods and list the challenges faced by these technologies.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/6667015\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6667015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Development of Single-Longitudinal-Mode Selection Technology for Solid-State Lasers
Lasers with narrow linewidths and single frequencies are widely used in fields such as radar detection, nonlinear optics, and precision measurements. The demand for such lasers has promoted the rapid development of single-longitudinal-mode (SLM) selection technology. Here, we highlight the working principles of current mainstream SLM selection technologies and the recent advances in the field. We compare the characteristics of different SLM selection methods and list the challenges faced by these technologies.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.